• Laser & Optoelectronics Progress
  • Vol. 60, Issue 15, 1500008 (2023)
Hongzhong Tan, Dahai Gao, Baolin Yan, and Yuhua Dai*
Author Affiliations
  • Beijing Key Laboratory of Special Elastomeric Composite Materials, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
  • show less
    DOI: 10.3788/LOP223428 Cite this Article Set citation alerts
    Hongzhong Tan, Dahai Gao, Baolin Yan, Yuhua Dai. Research Progress on Dye-Sensitized Solar Cells TiO2 Photoanodes[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1500008 Copy Citation Text show less
    References

    [1] Gauthier S, Reisberg B, Zaudig M et al. Mild cognitive impairment[J]. The Lancet, 367, 1262-1270(2006).

    [2] Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 414, 332-337(2001).

    [3] Shang Y F, Hao S W, Yang C H et al. Enhancing solar cell efficiency using photon upconversion materials[J]. Nanomaterials, 5, 1782-1809(2015).

    [4] Ciesielska J. Global market outlook for photovolatics until 2015[J]. European Photovoltaic Industry Association, 1-42(2011).

    [5] O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 353, 737-740(1991).

    [6] Mustafa M N, Sulaiman Y. Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells[J]. Solar Energy, 215, 26-43(2021).

    [7] Shalini S, Balasundaraprabhu R, Kumar T S et al. Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review[J]. International Journal of Energy Research, 40, 1303-1320(2016).

    [8] Sengupta D, Das P, Mondal B et al. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application-a review[J]. Renewable and Sustainable Energy Reviews, 60, 356-376(2016).

    [9] Raj C C, Prasanth R. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells[J]. Journal of Power Sources, 317, 120-132(2016).

    [10] Wu H P, Lan C M, Hu J Y et al. Hybrid titania photoanodes with a nanostructured multi-layer configuration for highly efficient dye-sensitized solar cells[J]. The Journal of Physical Chemistry Letters, 4, 1570-1577(2013).

    [11] Xu C K, Wu J M, Desai U V et al. Multilayer assembly of nanowire arrays for dye-sensitized solar cells[J]. Journal of the American Chemical Society, 133, 8122-8125(2011).

    [12] Zhang W G, Lei H X, Yao S W et al. Research progress in TiO2 photo-anode for dye-sensitized solar cells[J]. Modern Chemical Industry, 39, 40-43(2019).

    [13] Suresh S, Deepak T G, Ni C S et al. The role of crystallinity of the Nb2O5 blocking layer on the performance of dye-sensitized solar cells[J]. New Journal of Chemistry, 40, 6228-6237(2016).

    [14] Bae J H, Do S B, Cho S H et al. TiO2 treatment using ultrasonication for bubble cavitation generation and efficiency assessment of a dye-sensitized solar cell[J]. Ultrasonics Sonochemistry, 83, 105933(2022).

    [15] Ji Y J, Zhang M D, Cui J H et al. Highly-ordered TiO2 nanotube arrays with double-walled and bamboo-type structures in dye-sensitized solar cells[J]. Nano Energy, 1, 796-804(2012).

    [16] Yang R W, Cai J H, Lv K L et al. Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity[J]. Applied Catalysis B: Environmental, 210, 184-193(2017).

    [17] Liu Y Y, Chen K B, Chen H et al. One-step hydrothermal fabrication of three dimensional anatase hierarchical hyacinth-like TiO2 arrays for dye-sensitized solar cells[J]. Thin Solid Films, 683, 42-48(2019).

    [18] Wei K, Gu X Y, Chen E Z et al. Dissymmetric interface design of SnO2/TiO2 side-by-side bi-component nanofibers as photoanodes for dye sensitized solar cells: facilitated electron transport and enhanced carrier separation[J]. Journal of Colloid and Interface Science, 583, 24-32(2021).

    [19] Naveen Kumar T R, Yuvaraj S, Kavitha P et al. Aromatic amine passivated TiO2 for dye-sensitized solar cells (DSSC) with ~9.8% efficiency[J]. Solar Energy, 201, 965-971(2020).

    [20] Bhojanaa K B, Ramesh M, Pandikumar A. Complementary properties of silver nanoparticles on the photovoltaic performance of titania nanospheres based photoanode in dye-sensitized solar cells[J]. Materials Research Bulletin, 122, 110672(2020).

    [21] Wang C L, Yu Z H, Bu C H et al. Multifunctional alumina/titania hybrid blocking layer modified nanocrystalline titania films as efficient photoanodes in dye sensitized solar cells[J]. Journal of Power Sources, 282, 596-601(2015).

    [22] Roy P, Kim D, Lee K et al. TiO2 nanotubes and their application in dye-sensitized solar cells[J]. Nanoscale, 2, 45-59(2010).

    [23] Chan Y F, Wang C C, Chen C Y. Electrospun TiO2-MWCNTs nanofibers as photoanode in dye-sensitized solar cell (DSSC)[J]. Journal of Materials Science, 48, 5261-5272(2013).

    [24] Ge M Z, Cao C Y, Li S H et al. Enhanced photocatalytic performances of n-TiO₂ nanotubes by uniform creation of p-n heterojunctions with p-Bi₂O₃ quantum dots[J]. Nanoscale, 7, 11552-11560(2015).

    [25] Wu Z, Wang Y Y, Sun L et al. An ultrasound-assisted deposition of NiO nanoparticles on TiO2 nanotube arrays for enhanced photocatalytic activity[J]. Journal of Materials Chemistry A, 2, 8223-8229(2014).

    [26] Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells[J]. Journal of the American Chemical Society, 131, 3985-3990(2009).

    [27] Yang L, Guo M, Song Z C et al. Preparation of dye-sensitized solar cell photoanode based on high aspect ratio TiO2 nanowires[J]. Materials Reports, 34, 7-12(2020).

    [28] Shi F X, Tao H Q, Tong Y L et al. Preparation of flexible TiO2 nanotube composite thin film electrodes by hydrothermal method[J]. Journal of Shenyang Jianzhu University (Natural Science), 33, 520-528(2017).

    [29] Lei B X, Zheng X F, Qiao H K et al. A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells[J]. Electrochimica Acta, 149, 264-270(2014).

    [30] Ge Z W, Wang C L, Chen Z Y et al. Investigation of the TiO2 nanoparticles aggregation with high light harvesting for high-efficiency dye-sensitized solar cells[J]. Materials Research Bulletin, 135, 111148(2021).

    [31] Choi J, Kang G, Park T. A competitive electron transport mechanism in hierarchical homogeneous hybrid structures composed of TiO2 nanoparticles and nanotubes[J]. Chemistry of Materials, 27, 1359-1366(2015).

    [32] Bai Y, Xing Z, Yu H et al. Porous titania nanosheet/nanoparticle hybrids as photoanodes for dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 5, 12058-12065(2013).

    [33] Fan J D, Fàbrega C, Zamani R R et al. Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt(II/III) redox electrolyte[J]. ACS Applied Materials & Interfaces, 5, 9872-9877(2013).

    [34] Lü Y X, Li W Z, Li J et al. In situ formation of ZnO scattering sites within a TiO2 nanoparticles film for improved dye-sensitized solar cells performance[J]. Electrochimica Acta, 174, 438-445(2015).

    [35] Wang Y Z, Chen E L, Lai H M et al. Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO2/TiO2 core/shell particles in photoanode[J]. Ceramics International, 39, 5407-5413(2013).

    [36] Moradzaman M, Mohammadi M R, Nourizadeh H. Efficient dye-sensitized solar cells based on CNTs and Zr-doped TiO2 nanoparticles[J]. Materials Science in Semiconductor Processing, 40, 383-390(2015).

    [37] Cao L Q, Wu C C, Hu Q et al. Double-layer structure photoanode with TiO2 nanotubes and nanoparticles for dye-sensitized solar cells[J]. Journal of the American Ceramic Society, 96, 549-554(2013).

    [38] Son S, Hwang S H, Kim C et al. Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 5, 4815-4820(2013).

    [39] Hu Q, Wu C C, Cao L Q et al. A novel TiO2 nanowires/nanoparticles composite photoanode with SrO shell coating for high performance dye-sensitized solar cell[J]. Journal of Power Sources, 226, 8-15(2013).

    [40] Yang M, Dong B H, Yang X J et al. TiO2 nanoparticle/nanofiber–ZnO photoanode for the enhancement of the efficiency of dye-sensitized solar cells[J]. RSC Advances, 7, 41738-41744(2017).

    [41] Ye X Y, Yang L J, Chen H et al. TiO2/SnO2 composite hollow spheres for dye-sensitized solar cells[J]. Journal of Molecular Science, 36, 118-124(2020).

    [42] Kajana T, Velauthapillai D, Shivatharsiny Y et al. Structural and photoelectrochemical characterization of heterostructured carbon sheet/Ag2MoO4-SnS/Pt photocapacitor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 401, 112784(2020).

    [43] Dette C, Pérez-Osorio M A, Kley C S et al. TiO2 anatase with a bandgap in the visible region[J]. Nano Letters, 14, 6533-6538(2014).

    [44] Irfan M, Khan M I, Amami M et al. Effect of Fe ions beam on the structural, optical, photovoltaic properties of TiO2 based dye-sensitized solar cells[J]. Optical Materials, 123, 111794(2022).

    [45] Feng S L, Huang M L, Shi W et al. Influence of Zn-doped TiO2 photoanode on the performance of dye-sensitized solar cells[J]. Journal of Ceramics, 40, 18-23(2019).

    [46] Lü X Q, Zhang H Y, Li R et al. Nb2O5 coating on the performance of flexible dye sensitized solar cell based on TiO2 nanoarrays/upconversion luminescence composite structure[J]. Journal of Inorganic Materials, 34, 590-598(2019).

    [47] Bernadsha S B, Samson V A F, Madhavan J et al. Comparative study of the morphological and optical properties of RE3+(=ND3+, DY3+) doped TiO2: a pursuit for suitable anode material for DSSCs[J]. Materials Letters, 288, 129358(2021).

    [48] Khan M I, Rehman M A, Saleem M et al. Synthesis and characterization of nanostructured photoanodes for dye sensitized solar cells[J]. Ceramics International, 45, 20589-20592(2019).

    [49] Zheng F, Zhu Z T. Preparation of the Au@TiO2 nanofibers by one-step electrospinning for the composite photoanode of dye-sensitized solar cells[J]. Materials Chemistry and Physics, 208, 35-40(2018).

    [50] Li Y, Zhou Y S, Wang Y et al. Au nanoparticle-decorated urchin-like TiO2 hierarchical microspheres for high performance dye-sensitized solar cells[J]. Electrochimica Acta, 293, 230-239(2019).

    [51] Rajaramanan T, Kumara G R A, Velauthapillai D et al. Ni/N co-doped P25 TiO2 photoelectrodes for efficient dye-sensitized solar cells[J]. Materials Science in Semiconductor Processing, 135, 106062(2021).

    [52] Filipič M, Berginc M, Smole F et al. Analysis of electron recombination in dye-sensitized solar cell[J]. Current Applied Physics, 12, 238-246(2012).

    [53] Yang H, Li P, Zhang J B et al. TiO2 compact layer for dye-sensitized SnO2 nanocrystalline thin film[J]. Electrochimica Acta, 147, 366-370(2014).

    [54] Ding J N, Li Y, Hu H W et al. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2 nanofiber photoanodes[J]. Nanoscale Research Letters, 8, 9(2013).

    [55] Lim S H, Park K W, Jin M H et al. Facile preparation of a Nb2O5 blocking layer for dye-sensitized solar cells[J]. Journal of Electroceramics, 34, 221-227(2015).

    [56] Li L P, Xu C, Zhao Y et al. Improving performance via blocking layers in dye-sensitized solar cells based on nanowire photoanodes[J]. ACS Applied Materials & Interfaces, 7, 12824-12831(2015).

    [57] Tan J, Xu S L, Han X et al. Resolving and weighing the quantum orbits in strong-field tunneling ionization[J]. Advanced Photonics, 3, 035001(2021).

    [58] Chen P H, Chen X, Yang F Y et al. Preparation and photovoltaic performance of TiO2/SiO2 core-shell nanoarray photoanodes[J]. Journal of Materials Science and Engineering, 38, 961-965(2020).

    [59] Ramasamy P, Kang M S, Cha H J et al. Highly efficient dye-sensitized solar cells based on HfO2 modified TiO2 electrodes[J]. Materials Research Bulletin, 48, 79-83(2013).

    [60] Yang X J, Zhao L, Lü K L et al. Enhanced efficiency for dye-sensitized solar cells with ZrO2 as a barrier layer on TiO2 nanofibers[J]. Applied Surface Science, 469, 821-828(2019).

    [61] Ali Shah S A, Guo Z Y, Sayyad M H et al. Layer-by-layer titanium (IV) chloride treatment of TiO2 films to improve solar energy harvesting in dye-sensitized solar cells[J]. Journal of Electronic Materials, 50, 613-619(2021).

    [62] Maiti S, Azlan F, Jadhav Y et al. Efficient charge transport in surface engineered TiO2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells[J]. Solar Energy, 181, 195-202(2019).

    [63] Shang C L, Li Y, Du D R et al. Study on film modification TiO2-based dye sensitized solar cells[J]. Chinese Journal of Power Sources, 44, 418-421(2020).

    Hongzhong Tan, Dahai Gao, Baolin Yan, Yuhua Dai. Research Progress on Dye-Sensitized Solar Cells TiO2 Photoanodes[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1500008
    Download Citation