[1] KOOCHESFAHANI M. Molecular Tagging Velocimetry (MTV)-Progress and applications[R]. AIAA. 2013DOI: 10.2514/6.1999-3786.
[2] EDWARDS M R, DOGARIU A, MILES R B. Simultaneous temperature and velocity measurements in air with femtosecond laser tagging[J]. AIAA Journal, 2015, 53(8): 2280-2288.
[3] PAN F, SNCHEZ-GONZLEZ R, MCILVOY M H, et al.. Simultaneous three-dimensional velocimetry and thermometry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique[J]. Optics Letters, 2016, 41(7): 1376-1379.
[4] SI HADJ MOHAND H, FREZZOTTI A, BRANDNER J J, et al.. Molecular tagging velocimetry by direct phosphorescence in gas microflows: Correction of Taylor dispersion[J]. Experimental Thermal and Fluid Science, 2017, 83: 177-190.
[5] CHEN F, LIU H, LI H, et al.. An experimental investigation with molecular tagging technique on the spray flow ejected from an air-blast nozzle[R]. AIAA 2016-3251.
[6] ZHANG S H, YU X L, YAN H, et al.. Molecular tagging velocimetry of NH fluorescence in a high-enthalpy rarefied gas flow[J]. Applied Physics B, 2017, 123(4): 122.
[7] BALLA R J. Iodine tagging velocimetry in a Mach 10 wake[J]. AIAA Journal, 2013, 51(7): 1783-1786.
[8] HSU A, NORTH S, SRINIVASAN R, et al.. Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield[C]//39th AIAA Fluid Dynamics Conference, San Antonio, Texas. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009.
[9] ELBAZ A M, PITZ R W. N2O molecular tagging velocimetry[J]. Applied Physics B, 2012, 106(4): 961-969.
[10] WEHRMEYER J A, RIBAROV L A, OGUSS D A, et al.. Flame flow tagging velocimetry with 193-nm H2O photodissociation[J]. Applied Optics, 1999, 38(33): 6912-6917.
[12] ALEXANDER A, WEHRMEYER J, RUNGE W, et al.. Nonintrusive measurement of gas turbine exhaust velocity using hydroxyl tagging velocimetry[R]. AIAA 2008-3709.
[13] PITZ R W, LAHR M D, DOUGLAS Z W, et al.. Hydroxyl tagging velocimetry in a supersonic flow over a cavity[J]. Applied Optics, 2005, 44(31): 6692-6700.
[14] PERKINS A N, RAMSEY M, STRICKLAND D J, et al.. Dual-pulse hydroxyl tagging velocimetry (HTV) in jet engine exhausts[R]. AIAA 2009-5108.
[15] RAMSEY M C, PITZ R W, JENKINS T P, et al.. Planar 2D velocity measurements in the cap shock pattern of a thrust optimized rocket nozzle[J]. Shock Waves, 2012, 22(1): 39-46.
[16] PENRKINS A N, RAMSEY M C, PITZ R W, et al.. Investigation of a bow shock in a shock tube flow facility using hydroxyl tagging velocimetry (HTV)[R]. AIAA 2011-1092.
[18] HSU A G, SRINIVASAN R, BOWERSOX R D W, et al.. Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield[J]. AIAA Journal, 2009, 47(11): 2597-2604.
[19] DANEHY P M, O′ S, BYRNE, HOUWING A F P, et al.. Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide[J]. AIAA Journal, 2003, 41(2): 263-271.
[20] BATHEL B F, DANEHY P M, INMAN J A, et al.. Multiple velocity profile measurements in hypersonic flows using sequentially-imaged fluorescence tagging[C]// AIAA 2010-1404,2010: 1-17.
[21] GENDRICH C P, KOOCHESFAHANI M M, NOCERA D G. Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule[J]. Experiments in Fluids, 1997, 23(5): 361-372.
[22] RIBAROV L A, WEHRMEYER J A, HU S, et al.. Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows[J]. Experiments in Fluids, 2004, 37(1): 65-74.
[23] RAMSEY M C, PITZ R W. Template matching for improved accuracy in molecular tagging velocimetry[J]. Experiments in Fluids, 2011, 51(3): 811-819.