• Electro-Optic Technology Application
  • Vol. 35, Issue 6, 55 (2020)
SUN Yu-xin*, LI Yu-hai, and WANG Kai
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    SUN Yu-xin, LI Yu-hai, WANG Kai. Horizon Detection Based on Semantic Segmentation of Infrared Images[J]. Electro-Optic Technology Application, 2020, 35(6): 55 Copy Citation Text show less
    References

    [6] Long J, Shelhamer E, Darrell T, et al. Fully convolutional networks for semantic segmentation[C]//Computer Vision and Pattern Recognition, 2015: 3431-3440.

    [7] Ronneberger O, Fischer P, Brox T, et al. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention, 2015: 234-241.

    [8] Liangchieh C, George P, Iasonas K, et al. Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.

    [9] Liangchieh C, George P, Schroff F, et al. Rethinkong Atrous convolution for semantic image segmentation[J]. 2017, arXiv: 1706, 05587.

    [10] Liangchieh C, Yukun Zhu, George P, et al. Encoder-decoder with Atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision, 2018: 801-818.

    [11] HE Kai-ming, Z Xiang-yu, R Shao-qing. Deep residual learning for image recogniton[C]//Computer Vision and Pattern Recognition, 2015: 3431-3440.

    [12] Ioffer S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015.

    SUN Yu-xin, LI Yu-hai, WANG Kai. Horizon Detection Based on Semantic Segmentation of Infrared Images[J]. Electro-Optic Technology Application, 2020, 35(6): 55
    Download Citation