• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 3, 677 (2023)
LI Yage*, LIU Xuefeng, LI Hang, CAI Weijie..., LV Junyi, DUAN Hongjuan and ZHANG Haijun|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    LI Yage, LIU Xuefeng, LI Hang, CAI Weijie, LV Junyi, DUAN Hongjuan, ZHANG Haijun. Research Progress on High-Temperature Wetting Behavior Between Slag and Refractory[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 677 Copy Citation Text show less
    References

    [4] LEE W E, ZHANG S. Melt corrosion of oxide and oxide-carbon refractories[J]. Int Mater Rev, 1999, 44(3): 77-104.

    [5] YOUNG T. III. An essay on the cohesion of fluids[J]. Philos Trans R Soc London, 1805, 95: 65-87.

    [6] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem, 1936, 28(8): 988-994.

    [7] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transact Faraday Soc, 1944, 40: 546-551.

    [8] EUSTATHOPOULOS N, NICHOLAS M G, DREVET B. Wettability at high temperatures[M]. New York: Pergamon, 1999.

    [9] SAIZ E, TOMSIA A P. Kinetics of high-temperature spreading[J]. Curr Opin Solid State Mater Sci, 2005, 9(4/5): 167-173.

    [11] SOBCZAK N, SINGH M, ASTHANA R. High-temperature wettability measurements in metal/ceramic systems-some methodological issues[J]. Curr Opin Solid State Mater Sci, 2005, 9(4-5): 241-253.

    [12] SAIZ E, CANNON R M, TOMSIA A P. High-temperature wetting and the work of adhesion in metal/oxide systems[J]. Annu Rev Mater Res, 2008, 38: 197-226.

    [13] REYNAERT C, SNIEZEK E, SZCZERBA J. Corrosion tests for refractory materials intended for the steel industry-A review[J]. Ceram Silik, 2020, 64(3): 278-288.

    [14] SEON-HWA H, KYUYONG L, CHUNG Y. Reactive wetting phenomena of MgO-C refractories in contact with CaO-SiO2 slag[J]. T Nonferr Metal Soc, 2012, 22: s870-s875.

    [15] DUCHESNE M A, HUGHES R W. Slag density and surface tension measurements by the constrained sessile drop method[J]. Fuel, 2017, 188: 173-181.

    [16] ZHAO Z, ZHAO J, CUI Y, et al. Feasibility of a new physicochemical property measuring method to slag with volatiles[J]. J Min Metall Sect B, 2020, 56(1): 51-57.

    [17] SHEN P, ZHANG L, WANG Y, et al. Wettability between molten slag and dolomitic refractory[J]. Ceram Int, 2016, 42(14): 16040-16048.

    [19] CHOI J Y, LEE H G. Wetting of solid Al2O3 with molten CaO-Al2O3-SiO2[J]. ISIJ Int, 2003, 43(9): 1348-1355.

    [20] MONAGHAN B J, ABDEYAZDAN H, DOGAN N, et al. Effect of slag composition on wettability of oxide inclusions[J]. ISIJ Int, 2015, 55: 1834-1840.

    [21] ABDEYAZDAN H, DOGAN N, RHAMDHANI M A, et al. Dynamic wetting of CaO-Al2O3-SiO2-MgO liquid oxide on MgAl2O4 spinel[J]. Metall Mater Trans B, 2015, 46(1): 208-219.

    [22] ABDEYAZDAN H, MONAGHAN B J, LONGBOTTOM R J, et al. Interfacial tension in the CaO-Al2O3-SiO2-(MgO) liquid slag-solid oxide systems[J]. Metall Mater Trans B, 2017, 48(4): 1970-1980.

    [23] XU R Z, ZHANG J L, WANG Z Y, et al. Influence of Cr2O3 and B2O3 on viscosity and structure of high alumina slag[J]. Steel Res Int, 2017, 88(4): 1600241.

    [24] WANG Z, SHU Q, CHOU K. Viscosity of fluoride-free mold fluxes containing B2O3 and TiO2[J]. Steel Res Int, 2013, 84(8): 766-776.

    [25] LEE J, LE T H, CHOE J, et al. Density measurements of CaO-MnO-SiO2 slags[J]. ISIJ Int, 2012, 52(12): 2145-2148.

    [26] KIM J, SOHN I. Influence of TiO2/SiO2 and MnO on the viscosity and structure in the TiO2-MnO-SiO2 welding flux system[J]. J. Non-Cryst Solids, 2013, 379: 235-243.

    [27] DU C, YANG J, ZHAO X, et al. Viscosity and desulfurization behavior of blast furnace slag with high Al2O3 content[J]. J Iron Steel Res Int, 2013, 25(7): 19-22.

    [28] DENG Y C, WU S L, JIANG Y J, et al. Study on viscosity of the La2O3-SiO2-Al2O3 slag system[J]. Metall Mater Trans B, 2016, 47(4): 2433-2439.

    [29] ZUO H B, WANG C, XU C F, et al. Effects of MnO on slag viscosity and wetting behaviour between slag and refractory[J]. Ironmak Steelmak, 2016, 43(1): 56-63.

    [30] XU R, ZHANG J, FAN X, et al. Effect of MnO on high-alumina slag viscosity and corrosion behavior of refractory in slags[J]. ISIJ Int, 2017, 57(11): 1887-1894.

    [31] PARK J H. Structure-property correlations of CaO-SiO2-MnO slag derived from raman spectroscopy[J]. ISIJ Int, 2012, 52(9): 1627-1636.

    [32] KIM S, LEE K, CHUNG Y. Dissolutive wetting and spreading phenomena between Al2O3 substrate and CaO-Al2O3 liquid slags[J]. Metall Mater Trans B, 2016, 47(2): 1209-1216.

    [33] YOON T, LEE K, LEE B, et al. Wetting, spreading and penetration phenomena of slags on MgAl2O4 spinel refractories[J]. ISIJ Int, 2017, 57(8): 1327-1333.

    [34] PROTSENKO P, KOZLOVA O, VOYTOVYCH R, et al. Dissolutive wetting of Si by molten Cu[J]. J Mater Sci, 2008, 43(16): 5669-5671.

    [35] YAN M, LI Y, LI H, et al. Preparation and ladle slag resistance mechanism of MgAlON bonded Al2O3-MgAlON-Zr2Al3C4- (Al2CO)1-x(AlN)x refractories[J]. Ceram Int, 2019, 45(1): 346-353.

    [36] MA C, LI Y, ZHANG L, et al. Wear mechanism of a novel Al-Si-MgAl2O4-Al2O3 composite used in the low vessel of an RH secondary refining furnace[J]. Ceram Int, 2019, 45(9): 11275-11280.

    [37] JIA R, DENG L, YUN F, et al. Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics[J]. Mater Chem Phys, 2019, 233: 155-162.

    [38] CHEN W, WANG B, LIU L, et al. Preparation and slag erosion resistance mechanism of MgAlON based composite refractories synthesized from solid waste[J]. Ceram Int, 2020, 46(16): 26035-26043.

    [39] YANG M, LV X, WEI R, et al. Wetting behavior of TiO2 by calcium ferrite slag at 1523 K[J]. Metall Mater Trans B, 2018, 49(5): 2667-2680.

    [41] ZHU T, LI Y, SANG S, et al. Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets[J]. Mater Des, 2017, 124: 16-23.

    [42] ZHU T, LI Y, SANG S, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories[J]. Ceram Int, 2014, 40(3): 4333-4340.

    [43] HU S, ZHU R, LIU R, et al. Decarburisation behaviour of high-carbon MgO-C refractories in O2-CO2 oxidising atmospheres[J]. Ceram Int, 2018, 44(17): 20641-20647.

    [44] CHEN J, LI N, HUBLKOV J, et al. Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: antioxidant or alternative carbon source?[J]. J Eur Ceram Soc, 2018, 38(9): 3387-3394.

    [46] LIU Z, YUAN L, JIN E, et al. Wetting, spreading and corrosion behavior of molten slag on dense MgO and MgO-C refractory[J]. Ceram Int, 2019, 45(1): 718-724.

    [47] YUAN Z, WU Y, ZHAO H, et al. Wettability between molten slag and MgO-C refractories for the slag splashing process[J]. ISIJ Int, 2013, 53(4): 598-602.

    [48] LIU Z, YU J, YANG X, et al. Oxidation resistance and wetting behavior of MgO-C refractories: Effect of carbon content[J]. Mater, 2018, 11(6): 883.

    [51] WU C, SAHAJWALLA C. Influence of melt carbon and sulfur on the wetting of solid graphite by Fe-CS melts[J]. Metall Mater Trans B,1998, 29(2): 471-477.

    [52] SUN H, MORI K, SAHAJWALLA V, et al. Carbon solution in liquid iron and iron alloys[J]. High Temp Mater Processes, 1998, 17(4): 257-270.

    [53] KAPILASHRAMI E, JAKOBSSON A, SEETHARAMAN S, et al. Studies of the wetting characteristics of liquid iron on dense alumina by the X-ray sessile drop technique[J]. Metall Mater Trans B, 2003, 34(2): 193-199.

    [54] HUMENIK JR M, KINGERY W D. Metal-ceramic interactions: III, Surface tension and wettability of metal-ceramic systems[J]. J Am Ceram Soc, 1954, 37(1): 18-23.

    [55] ALLEN B, KINGERY WJTOTAIOM, ENGINEERS M. Surface tension and contact angles in some liquid metal-solid ceramic systems at elevated temperatures[J]. Trans Am Inst Min Metall Eng, 1959, 215(1): 30-37.

    [56] SANGIORGI R, MUOLO M L, CHATAIN D, et al. Wettability and work of adhesion of nonreactive liquid metals on silica[J]. J Am Ceram Soc, 1988, 71(9): 742-748.

    [57] ZHAO L, SAHAJWALLA V. Interfacial phenomena during wetting of graphite/alumina mixtures by liquid iron[J]. ISIJ Int, 2003, 43(1): 1-6.

    [58] KUMAR A, KHANNA R, IKRAM-UL-HAQ M, et al. Corrosion behavior of Al2O3-C refractories with casting mould meniscus slags at 1 550 ℃[J]. Steel Res Int, 2016, 87(1): 46-56

    LI Yage, LIU Xuefeng, LI Hang, CAI Weijie, LV Junyi, DUAN Hongjuan, ZHANG Haijun. Research Progress on High-Temperature Wetting Behavior Between Slag and Refractory[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 677
    Download Citation