[1] BERNHARD C G. Structural and functional adaptation in a visual system[J]. Endeavour, 1967, 26: 79-84.
[2] HUANG M J, YANG C R, CHOU Y C. Fabrication of nanoporous antireflection surfaces on silicon[J]. Solar Energy Materials and Solar Cells, 2008, 92: 1352-1357.
[3] GLASER T, IHRING A, MORGEN ROTH W, et al. High temperature resistant antireflective motheye structures for infrared radiation sensors[J]. Microsystem Technologies, 2005, 11(23): 86-90.
[4] KANAMORI Y, ISHIMORI M, HANE K. High efficient lightemitting diodes with antireflection subwavelength gratings[J]. IEEE Photonics Technology Letters, 2002, 14(8): 1064-1066.
[5] RAO J, WINFIELD R, KEENEY L. Motheyestructured lightemitting diodes[J]. Optics Communications, 2010, 283(11): 446-2450.
[6] GOMBERT A, LEREHENMVLLER H. Antireflective coating and method of manufacturing same: US, 6359735 B1[P].200203-19.
[7] PIVNRANTA B, SAASTAMOINEN T, KVITTZNEN M. A wideangle antireflection surface for the visible spectrum[J]. Nanotechnology, 2009, 20(37): 375301.
[8] KANAMORI Y, SASAKI M, HANE K. Broadband antireflection gratings fabricated upon silicon substrates[J]. Optics Letters, 1999, 24(20): 1422.
[9] SONG Youngmin, CHOU H J, YU J S, et al. Design of highly transparent glasses with broadband antireflective subwavelength structures[J]. Optics Express, 2010, 18(12): 13063.
[10] SONG Youngmin, BAE S Y, YU J S, et al. Closely packed and aspectratiocontrolled antireflection subwavelength gratings on GaAs using a lenslike shape transfer[J]. Optics Letters, 2009, 34(11): 1702-1704.
[11] HUANG Yifan, CHATTOPADHYAY S, JEN Y J, et al. Improved broadband and quasiomnidirectional antireflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2007, 2(12): 770-774.
[12] CHEN Yi, XU Zhida, GARTZA M R. Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching[J]. ACS Nano, 2011, 5(10): 8002-8012.
[13] ZHANG Guoming, ZHANG J, XIE G, et al. Cicada wings: a stamp from nature for nanoimprint lithography[J]. Small, 2006, 2(12): 1440.
[14] SAINIEMI L, JOKINEN V, SHAH A, et al. Nonreflecting silicon and polymer surfaces by plasma etching and replication[J]. Advanced Materials, 2011, 23(1): 122-126.
[15] TING Chiajen, CHANG Fuhyu, SHAH A, et al. Fabrication of an antireflective polymer optical film with subwavelength structures using a rolltoroll microreplication process[J]. Journal of Micromechanics and Microengineering, 2008, 18(7): 075001.
[16] GMBH H. HTARAntireflective motheye structures [EB/OL].(200112)[20130514],http://www.holotools.de/download/HTA R05%20product%20sheet%200112.pdf.
[17] CHEN Q, HUBBARD G, SHIELDS P A, et al. Broadband motheye antireflection coatings fabricated by lowcost nanoimprinting[J]. Applied Physics Letters, 2009, 94(26): 263118.
[18] WANG Hsinping, LAI K Y, LIN Y R, et al. Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of fresnel reflection[J]. Langmuir, 2010, 26(15): 12855-12858.
[19] WANG Yandong, LV Nan, XU Hongbo, et al. Biomimetic corrugated silicon nanocone arrays for selfcleaning antireflection coatings[J]. Nano Research, 2010, 3(7): 520-527.
[20] MORHARD C, PACHOLSKI C. Antireflective motheye structures fabricated by a cheap and versatile process on various optical elements[C]. Portland, USA: 2011 11th IEEE International Conference on Nanotechnology, 2011.
[21] CHIU C H, YU Peichen, KUO H C, et al. Broadband and omnidirectional antireflection employing disordered GaN nanopillars[J]. Optics Express, 2008, 16(12): 8748-8754.
[22] SONG Y M, CHOI E S, YU J S, et al. Lightextraction enhancement of red AlGaInP lightemitting diodes with antireflective subwavelength structures[J]. Optics Express, 2009, 17(23): 20991-20997.
[23] LIN Gongru, CHANG Y C, LIU E S, et al. Low refractive index Si nanopillars on Si substrate[J]. Applied Physics Letters, 2007, 90(18): 181923.
[24] SONG Youngmin, JEONG Y, YEO C I, et al. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures[J]. Optics Express A, 2012, 20(S6): 916.
[25] BI Yanming, SU Xiaodong, ZOU Shuai, et al. Plasmaetching fabrication and properties of black silicon by using sputtered silver nanoparticles as micromasks[J]. Thin Solid Films, 2012, 521(49): 176-180.
[26] FARZINPOUR P, SUNDAR A, CILRO Y K D, et al. Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer[J]. Nanotechnology, 2012, 23(49): 495604.
[27] YANG Lanying, FENG Qin. Hybrid motheye structures for enhanced broadband antireflection characteristics[J]. Applied Physics Express, 2010, 3: 102602.
[28] WU Wenwei, XU Jiaming, CHEN Hongyan. Simulation of optical model base on microcones structure of “black silicon”[J]. Chinese Journal of Lasers, 2011, 38(6): 0603029.
[29] POITRAS D, DOBROWOLSKI J A. Toward perfect antireflection coatings[J]. Applied Optics, 2004, 43(6): 1286-1295.
[30] SONG Peng, MORRIS G M. Resonant scattering from twodimensional gratings[J]. Journal of the Optical Society of America A, 1996, 13(5): 993-1005.
[31] MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupledwave analysis for surfacerelief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086.
[32] MOHARAM M G, GAYLORD T K, GRANN E B, et al. Formulation for stable and efficient implementation of the rigorous coupledwave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.
[33] YU Weixing, LU Zhenwu. Vector diffracted characteristic tapered twodimensional subwavelength surfacerelief structure[J]. Acta Photonica Sinica, 2001, 30(3): 331-335.
[34] LEHR D, HELGRT M, SUNDERMANN M, et al. Simulating different manufactured antireflective subwavelength structures considering the influence of local topographic variations[J]. Optics Express, 2010, 18(23): 23878.