
- Chinese Optics Letters
- Vol. 20, Issue 1, 011303 (2022)
Abstract
1. Introduction
Thin film lithium niobate on insulator (LNOI) is emerging as a promising platform for integrated photonic technologies because of its small footprint, broadband ultra-low propagation loss, high optical nonlinear coefficient, and large electro-optical effect[
In this Letter, we demonstrate an EO tunable microlaser based on an
2. Device Characterization
In our experiment, the on-chip LN microdisk resonator integrated with Cr film electrodes was fabricated on a 600-nm-thick Z-cut
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
Figure 1.(a) Schematic of the on-chip Er3+-doped LN microdisk resonator integrated with Cr film electrodes. (b) The top view of the 200-µm-diameter Er3+-doped LN microdisk from the optical microscope. (c) The enlarged image of the rim of the Er3+-doped LN microdisk by a 100× microscope objective.
To characterize the electro-optical tunability of the
Figure 2.(a) Schematic of the experimental setup for tunable Er3+-doped LN microdisk laser. (WG, waveform generator; CTL, C-band tunable laser; PL, pump laser; PC, polarization controller; PD, photodetector; Osc, oscilloscope; OSA, optical spectrum analyzer; VG, voltage generator; OF, optical fiber; EC, electric cable.) (b) The measured transmission spectrum for the wavelength of the Er3+-doped LN microdisk laser. (c) The experimental setup photographed by a cell phone.
The intrinsic Q factors of 80 resonant modes on the
Figure 3.(a) Histogram showing the statistic results of 80 resonant modes in Er3+-doped LN microdisk. (b) The double Lorentzian fitting showing a mode splitting, indicating both intrinsic Q factors of 2.13 × 106 as measured at λ = 1544 nm.
Figure 4(a) shows that the resonant wavelength continuously shifts with the increase of the applied DC voltage; the measurement was performed around the resonant wavelength of 1551.12 nm. Benefiting from the large electro-optical coefficient of LN crystal and a high Q factor of our microdisk resonators, we observe that by changing the electric voltage from −200 V to 200 V, a linear dependence of the resonant wavelength on the pump power is observed, showing that the resonant wavelength shifts with
Figure 4.Electro-optic modulation in Er3+-doped LN microdisk resonator. (a) Normalized transmission measured when −200 V, −150 V, −100 V, −50 V, 0 V, +50 V, +100 V, +150 V, and +200 V voltages were applied on the electrodes. (b) The linear fitting of resonance wavelength shift in the Er3+-doped LN microdisk resonator with the applied negative and positive voltages.
The lasing mode of the
Figure 5.(a) Spectrum of the Er3+-doped LN microdisk laser with the pump power at 18 mW. (b) Recorded lasing spectra of the microdisk with the increasing voltage applied on electrodes.
3. Conclusions
To conclude, we have demonstrated an EO tunable microlaser based on an
References
[1] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res., 8, 1910(2020).
[2] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).
[3] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, M. Lončar. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon., 13, 242(2021).
[4] Y. Cheng. Lithium Niobate Nanophotonics(2021).
[5] S. Wang, L. Yang, R. Cheng, Y. Xu, M. Shen, R. L. Cone, C. W. Thiel, H. X. Tang. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett., 116, 151103(2020).
[6] D. Pak, H. An, A. Nandi, X. Jiang, Y. Xuan, M. Hosseini. Ytterbium-implanted photonic resonators based on thin film lithium niobate. J. Appl. Phys., 128, 084302(2020).
[7] Z. Wang, Z. Fang, Z. Liu, W. Chu, Y. Zhou, J. Zhang, R. Wu, M. Wang, T. Lu, Y. Cheng. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett., 46, 380(2021).
[8] Y. A. Liu, X. S. Yan, J. W. Wu, B. Zhu, Y. P. Chen, X. F. Chen. On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron., 64, 234262(2021).
[9] Q. Luo, Z. Z. Hao, C. Yang, R. Zhang, D. H. Zheng, S. G. Liu, H. D. Liu, F. Bo, Y. F. Kong, G. Q. Zhang, J. J. Xu. Microdisk lasers on an erbium doped lithium-niobate chip. Sci. China Phys. Mech. Astron., 64, 234263(2021).
[10] D. Yin, Y. Zhou, Z. Liu, Z. Wang, H. Zhang, Z. Fang, W. Chu, R. Wu, J. Zhang, W. Chen, M. Wang, Y. Cheng. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Opt. Lett., 46, 2127(2021).
[11] J. Zhou, Y. Liang, Z. Liu, W. Chu, H. Zhang, D. Yin, Z. Fang, R. Wu, J. Zhang, W. Chen, Z. Wang, Y. Zhou, M. Wang, Y. Cheng. On-chip integrated waveguide amplifiers on erbium-doped thin film lithium niobate on insulator. Laser Photon. Rev., 2100030(2021).
[12] Z. Chen, Q. Xu, K. Zhang, W.-H. Wong, D.-L. Zhang, E. Y.-B. Pun, C. Wang. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett., 46, 1161(2021).
[13] Q. Luo, C. Yang, Z. Hao, R. Zhang, D. Zheng, F. Bo, Y. Kong, G. Zhang, J. Xu. On-chip erbium-doped lithium niobate waveguide amplifiers. Chin. Opt. Lett., 19, 060008(2021).
[14] R. Gao, J. Guan, N. Yao, L. Deng, J. Lin, M. Wang, L. Qiao, Z. Wang, Y. Liang, Y. Zhou, Y. Cheng. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. Opt. Lett., 46, 3131(2021).
[15] J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, J. Xu. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072(2015).
[16] C. Wang, M. Zhang, B. Stern, M. Lipson, M. Lončar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547(2018).
[17] T. J. Wang, G. L. Peng, M. Y. Chan, C. H. Chen. On-chip optical microresonators with high electro-optic tuning efficiency. J. Lightwave Technol., 38, 1851(2020).
[18] Z. Wang, C. Wu, Z. Fang, M. Wang, J. Lin, R. Wu, J. Zhang, J. Yu, M. Wu, W. Chu, T. Lu, G. Chen, Y. Cheng. High-quality-factor optical microresonators fabricated on lithium niobate thin film with an electro-optical tuning range spanning over one free spectral range. Chin. Opt. Lett., 19, 060002(2021).
[19] G. Poberaj, H. Hu, W. Sohler, P. Günter. On-chip integrated waveguide amplifiers on erbium-doped thin film lithium niobate on insulator. Laser Photon. Rev., 6, 488(2012).
[20] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018).
[21] Z. Fang, S. Haque, J. Lin, R. Wu, J. Zhang, M. Wang, J. Zhou, M. Rafa, T. Lu, Y. Cheng. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator. Opt. Lett., 44, 1214(2019).
[22] Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, Y. Cheng. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Opt. Lett., 44, 5953(2019).

Set citation alerts for the article
Please enter your email address