[1] Zhu J D, Zhang T, Yang Y C and Huang R 2020 A comprehensive review on emerging artificial neuromorphic devices Appl. Phys. Rev. 7 011312
[2] Sun B, Guo T, Zhou G D, Ranjan S, Jiao Y X, Wei L, Zhou Y N and Wu Y A 2021 Synaptic devices based neuromorphic computing applications in artificial intelligence Mater. Today Phys. 18 100393
[3] ZhuYX,ZhuY, MaoHW, HeYL,JiangSS,ZhuL, Chen C S, Wan C J and Wan Q 2022 Recent advances in emerging neuromorphic computing and perception devices J. Appl. Phys. 55 053002
[4] Sokolov A S, Abbas H, Abbas Y and Choi C 2021 Towards engineering in memristors for emerging memory and neuromorphic computing: a review J. Semicond. 42 013101
[5] HeYL,ZhuL,ZhuY, ChenCS,JiangSS,LiuR,ShiYand Wan Q 2021 Recent progress on emerging transistor-based neuromorphic devices Adv. Intell. Syst. 3 2000210
[6] Shastri B J, Tait A N, Ferreira De Lima T, Pernice W H P, Bhaskaran H, Wright C D and Prucnal P R 2021 Photonics for artificial intelligence and neuromorphic computing Nat. Photon. 15 102–14
[7] Chakraborty I, Jaiswal A, Saha A K, Gupta S K and Roy K 2020 Pathways to efficient neuromorphic computing with non-volatile memory technologies Appl. Phys. Rev. 7 021308
[8] Choi S, Yang J and Wang G 2020 Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing Adv. Mater. 32 2004659
[9] Zhang Y et al 2020 Brain-inspired computing with memristors: challenges in devices, circuits, and systems Appl. Phys. Rev. 7 011308
[10] Ielmini D and Wong H-S P 2018 In-memory computing with resistive switching devices Nat. Electron. 1 333–43
[11] Akopyan F et al 2015 TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34 1537–57
[12] Davies M et al 2018 Loihi: a neuromorphic many core processor with on-chip learning IEEE Micro 38 82–99
[13] Indiveri G et al 2011 Neuromorphic silicon neuron circuits Front. Neurosci. 5 73
[14] Jiang S, Nie S, He Y, Liu R, Chen C and Wan Q 2019 Emerging synaptic devices: from two-terminal memristors to multiterminal neuromorphic transistors Mater. Today Nano 8 100059
[15] Upadhyay N K, Jiang H, Wang Z R, Asapu S, Xia Q F and Joshua Yang J 2019 Emerging memory devices for neuromorphic computing Adv. Mater. Technol. 4 1800589
[16] Covi E, Mulaosmanovic H, Max B, Slesazeck S and Mikolajick T 2022 Ferroelectric-based synapses and neurons for neuromorphic computing Neuromorph. Comput. Eng. 2 012002
[17] RenYY, SunRY, ChenSHY,DuCY,HanSTandZhouY 2021 Exploring phase-change memory: from material systems to device physics Phys. Status Solidi 15 2000394
[18] Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L and Huang J 2019 Recent advances in transistor-based artificial synapses Adv. Funct. Mater. 29 1903700
[19] Sun K X, Chen J S and Yan X B 2021 The future of memristors: materials engineering and neural networks Adv. Funct. Mater. 31 2006773
[20] Sun F Q, Lu Q F, Feng S M and Zhang T 2021 Flexible artificial sensory systems based on neuromorphic devices ACS Nano 15 3875–99
[21] Woo J, Kim J H, Im J-P and Moon S E 2020 Recent advancements in emerging neuromorphic device technologies Adv. Intell. Syst. 2 2000111
[22] Wan Q 2023 Neuromorphic devices for brain-like computing J. Inorg. Mater. 38 365–6
[23] WangSY, LiuXX,XuMS,LiuLW, YangDRandZhouP 2022 Two-dimensional devices and integration towards the silicon lines Nat. Mater. 21 1225–39
[24] Wan CJ,LiuYH,ZhuLQ,FengP, ShiYandWan Q2016 Short-term synaptic plasticity regulation in solution-gated indium–gallium–zinc-oxide electric-double-layer transistors ACS Appl. Mater. Interfaces 8 9762–8
[25] ZhuLQ,Wan CJ,GuoLQ,ShiYandWan Q2014 Artificial synapse network on inorganic proton conductor for neuromorphic systems Nat. Commun. 5 3158
[26] Wan X, Yang Y, Feng P, Shi Y and Wan Q 2016 Short-term plasticity and synaptic filtering emulated in electrolyte-gated IGZO transistors IEEE Electron Device Lett. 37 299–302
[27] He Y L, Yang Y, Nie S, Liu R and Wan Q 2018 Electric-double-layer transistors for synaptic devices and neuromorphic systems J. Mater. Chem. C 6 5336–52
[28] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80–83
[29] Chang T, Jo S-H, Kim K-H, Sheridan P, Gaba S and Lu W 2011 Synaptic behaviors and modeling of a metal oxide memristive device Appl. Phys. A 102 857–63
[30] Covi E, Brivio S, Serb A, Prodromakis T, Fanciulli M and Spiga S 2016 HfO2-based memristors for neuromorphic applications 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS) (IEEE) pp 393–6
[31] Wang Z R et al 2017 Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing Nat. Mater. 16 101–8
[32] Chen L, He Z-Y, Wang T-Y, Dai Y-W, Zhu H, Sun Q-Q and Zhang D W 2018 CMOS compatible bio-realistic implementation with Ag/HfO2-based synaptic nanoelectronics for artificial neuromorphic system Electronics 7 80
[33] Kim C, Lee Y, Kim S, Kang M and Kim S 2023 Diverse synaptic weight adjustment of bio-inspired ZrOx-based memristors for neuromorphic system Mater. Sci. Semicond. Process. 157 107314
[34] XiZN,RuanJJ,LiC,ZhengCY, Wen Z,DaiJY, LiAD and Wu D 2017 Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier Nat. Commun. 8 15217
[35] Ryu H and Kim S 2020 Pseudo-interface switching of a two-terminal TaOx/HfO2 synaptic device for neuromorphic applications Nanomaterials 10 1550
[36] Mahata C, Lee C, An Y, Kim M-H, Bang S, Kim C S, Ryu J-H, Kim S, Kim H and Park B-G 2020 Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems J. Alloys Compd. 826 154434
[37] Oh S, Kim T, Kwak M, Song J, Woo J, Jeon S, Yoo I K and Hwang H 2017 HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications IEEE Electron Device Lett. 38 732–5
[38] Chen L, Wang T-Y, Dai Y-W, Cha M-Y, Zhu H, Sun Q-Q, Ding S-J, Zhou P, Chua L and Zhang D W 2018 Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications Nanoscale 10 15826–33
[39] Yoon C,LeeJH,LeeS,JeonJH,JangJT, KimDH, Kim Y H and Park B H 2017 Synaptic plasticity selectively activated by polarization-dependent energy-efficient ion migration in an ultrathin ferroelectric tunnel junction Nano Lett. 17 1949–55
[40] Boyn S et al 2017 Learning through ferroelectric domain dynamics in solid-state synapses Nat. Commun. 8 14736
[41] Ryu H, Wu H N, Rao F B and Zhu W J 2019 Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing Sci. Rep. 9 20383
[42] ZhuY, HeYL,ChenCS,ZhuL,MaoHW, ZhuYX, WangX J, YangY, Wan C J and Wan Q 2022 HfZrOx-based capacitive synapses with highly linear and symmetric multilevel characteristics for neuromorphic computing Appl. Phys. Lett. 120 113504
[43] LiuJ,YangHF, MaZY, ChenKJ,HuangXFandWangK 2020 HfO2/TiOx bilayer structure memristor with linear conductance tuning for high density memory and neuromorphic computing J. Appl. Phys. 128 184902
[44] Jang J T, Kim D, Choi W S, Choi S-J, Kim D M, Kim Y and Kim D H 2020 One transistor–two memristor based on amorphous indium–gallium–zinc-oxide for neuromorphic synaptic devices ACS Appl. Electron. Mater. 2 2837–44
[45] LiuQ,GaoS,LiY, Yue WJ,ZhangCW, KanHand Shen G Z 2023 HfO2/WO3 heterojunction structured memristor for high-density storage and neuromorphic computing Adv. Mater. Technol. 8 2201143
[46] MaZL,GeJ,ChenWJ,CaoXC,DiaoSQ,LiuZYand Pan S S 2022 Reliable memristor based on ultrathin native silicon oxide ACS Appl. Mater. Interfaces 14 21207–16
[47] Woo J, Padovani A, Moon K, Kwak M, Larcher L and Hwang H 2017 Linking conductive filament properties and evolution to synaptic behavior of RRAM devices for neuromorphic applications IEEE Electron Device Lett. 38 1220–3
[48] Woo J, Moon K, Song J, Lee S, Kwak M, Park J and Hwang H 2016 Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems IEEE Electron Device Lett. 37 994–7
[49] BaoL,FangYC,WangZW, KangJ,YangYC,Xu JT, Cai Y M and Huang R 2018 Study on microscopic model of resistive switching in amorphous tantalum pentoxide from first-principle calculations 2018 China Semiconductor Technology Int. Conf. (CSTIC) (IEEE) pp 1–3
[50] LinY, ZengT, XuHY, WangZQ,ZhaoXN,LiuWZ, Ma J G and Liu Y C 2018 Transferable and flexible artificial memristive synapse based on WOx Schottky junction on arbitrary substrates Adv. Electron. Mater. 4 1800373
[51] Kulkarni S R, Kadetotad D V, Yin S H, Seo J S and Rajendran B 2019 Neuromorphic hardware accelerator for SNN inference based on STT-RAM crossbar arrays 2019 26th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS) (IEEE) pp 438–41
[52] Park J 2020 Neuromorphic computing using emerging synaptic devices: a retrospective summary and an outlook Electronics 9 1414
[53] Kim I-J and Lee J-S 2023 Ferroelectric transistors for memory and neuromorphic device applications Adv. Mater. 35 2206864
[54] Mikolajick T, Park M H, Begon-Lours L and Slesazeck S 2023 From ferroelectric material optimization to neuromorphic devices Adv. Mater. 2206042
[55] ZhuYX,LiuGX,XinZJ,FuCY, Wan QandShanFK 2020 Solution-processed, electrolyte-gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications ACS Appl. Mater. Interfaces 12 1061–8
[56] Guo X, Bayat F M, Bavandpour M, Klachko M, Mahmoodi M R, Prezioso M, Likharev K K and Strukov D B 2017 Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology 2017 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 6.5.1–4
[57] Malavena G, Spinelli A S and Compagnoni C M 2018 Implementing spike-timing-dependent plasticity and unsupervised learning in a mainstream NOR flash memory array 2018 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 2.3.1–4
[58] Wan CJ,LiBJ,FengP, ZhuLQ,ShiYandWan Q2016 Indium-zinc-oxide neuron thin film transistors laterally coupled by sodium alginate electrolytes IEEE Trans. Electron Devices 63 3958–63
[59] ZhuYX,MaoHW, ZhuY, ZhuL,ChenCS,WangXJ, Ke S, Fu C Y, Wan C J and Wan Q 2022 Photoelectric synapse based on InGaZnO nanofibers for high precision neuromorphic computing IEEE Electron Device Lett. 43 651–4
[60] JiangSS,HeYL,LiuR,ChenCS,ZhuL,ZhuY, ShiYand Wan Q 2021 Freestanding dual-gate oxide-based neuromorphic transistors for flexible artificial nociceptors IEEE Trans. Electron Devices 68 415–20
[61] ZhuYX et al 2022 IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity Appl. Phys. Lett. 121 133502
[62] Jiang J, Wan Q, Sun J and Lu A X 2009 Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature Appl. Phys. Lett. 95 152114
[63] HeYL,LiuR,JiangSS,ChenCS,ZhuL,ShiYand Wan Q 2020 IGZO-based floating-gate synaptic transistors for neuromorphic computing J. Phys. D: Appl. Phys. 53 215106
[64] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Dual-functional long-term plasticity emulated in IGZO-based photoelectric neuromorphic transistors IEEE Electron Device Lett. 40 818–21
[65] Ke S,FuCY, LinXH,ZhuYX,MaoHW, ZhuL, WangX J, Chen C S, Wan C J and Wan Q 2022 BCM learning rules emulated by a-IGZO-based photoelectronic neuromorphic transistors IEEE Trans. Electron Devices 69 4646–50
[66] YangY, CuiHY, Ke S,PeiMJ,ShiKL,Wan CJand Wan Q 2023 Reservoir computing based on electric-double-layer coupled InGaZnO artificial synapse Appl. Phys. Lett. 122 043508
[67] Kim M-K, Kim I-J and Lee J-S 2021 Oxide semiconductor-based ferroelectric thin-film transistors for advanced neuromorphic computing Appl. Phys. Lett. 118 032902
[68] Kim I-J, Kim M-K and Lee J-S 2023 Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks Nat. Commun. 14 504
[69] KimJP et al 2023 Dielectric-engineered high-speed, low-power, highly reliable charge trap flash-based synaptic device for neuromorphic computing beyond inference Nano Lett. 23 451–61
[70] Park J, Jang Y, Lee J, An S, Mok J and Lee S-Y 2023 Synaptic transistor based on In-Ga-Zn-O channel and trap layers with highly linear conductance modulation for neuromorphic computing Adv. Electron. Mater. 9 2201306
[71] Seo Y-T, Lee M-S, Kim C-H, Woo S Y, Bae J-H, Park B-G and Lee J-H 2019 Si-based FET-type synaptic device with short-term and long-term plasticity using high-κ gate-stack IEEE Trans. Electron Devices 66 917–23
[72] Yu J-M, Han J-K and Choi Y-K 2022 Mimicking biological synaptic plasticity with a leaky charge-trap FinFET J. Mater. Chem. C 10 9961–7
[73] Jerry M, Chen P Y, Zhang J, Sharma P, Ni K, Yu S M and Datta S 2017 Ferroelectric FET analog synapse for acceleration of deep neural network training 2017 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 6.2.1–4
[74] Zhang X M et al 2018 An artificial neuron based on a threshold switching memristor IEEE Electron Device Lett. 39 308–11
[75] Beck M E, Shylendra A, Sangwan V K, Guo S L, Gaviria Rojas W A, Yoo H, Bergeron H, Su K, Trivedi A R and Hersam M C 2020 Spiking neurons from tunable Gaussian heterojunction transistors Nat. Commun. 11 1565
[76] Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 A scalable neuristor built with Mott memristors Nat. Mater. 12 114–7
[77] HuaQL,Wu HQ,GaoB,ZhaoMR,LiYJ,LiXY, HouX, Chang M-F, Zhou P and Qian H 2019 A threshold switching selector based on highly ordered Ag nanodots for X-point memory applications Adv. Sci. 6 1900024
[78] Wang Z R et al 2018 Fully memristive neural networks for pattern classification with unsupervised learning Nat. Electron. 1 137–45
[79] Zhang X M et al 2021 Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks Sci. Bull. 66 1624–33
[80] Zhang Y X, Fang Z L and Yan X B 2022 HfO2-based memristor-CMOS hybrid implementation of artificial neuron model Appl. Phys. Lett. 120 213502
[81] Hua Q L, Jiang C S and Hu W G 2021 Ag/HfO2-based threshold switching memristor as an oscillatory neuron 2021 5th IEEE Electron Devices Technology & Manufacturing Conf. (EDTM) (IEEE) pp 1–3
[82] Cao R et al 2022 Compact artificial neuron based on anti-ferroelectric transistor Nat. Commun. 13 7018
[83] Park M-K, Yoo H-N, Seo Y-T, Woo S Y, Bae J-H, Park B-G and Lee J-H 2020 Field effect transistor-type devices using high-κ gate insulator stacks for neuromorphic applications ACS Appl. Electron. Mater. 2 323–8
[84] Wang D et al 2022 Synergy of spin-orbit torque and built-in field in magnetic tunnel junctions with tilted magnetic anisotropy: toward tunable and reliable spintronic neurons Adv. Sci. 9 2203006
[85] Wang D et al 2023 Spintronic leaky-integrate-fire spiking neurons with self-reset and winner-takes-all for neuromorphic computing Nat. Commun. 14 1068
[86] Li X et al 2020 Power-efficient neural network with artificial dendrites Nat. Nanotechnol. 15 776–82
[87] Sengupta A and Roy K 2017 Encoding neural and synaptic functionalities in electron spin: a pathway to efficient neuromorphic computing Appl. Phys. Rev. 4 041105
[88] Moore J J, Ravassard P M, Ho D, Acharya L, Kees A L, Vuong C and Mehta M R 2017 Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats Science 355 eaaj1497
[89] Trenholm S, McLaughlin A J, Schwab D J, Turner M H, Smith R G, Rieke F and Awatramani G B 2014 Nonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlations Nat. Neurosci. 17 1759–66
[90] Lavzin M, Rapoport S, Polsky A, Garion L and Schiller J 2012 Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo Nature 490 397–401
[91] Wan TQ,MaSJ,LiaoFY, Fan LWandChaiY2022 Neuromorphic sensory computing Sci. China Inf. Sci. 65 141401
[92] Ji X L, Zhao X Y, Tan M C and Zhao R 2020 Artificial perception built on memristive system: visual, auditory, and tactile sensations Adv. Intell. Syst. 2 1900118
[93] Yoon J H, Wang Z R, Kim K M, Wu H Q, Ravichandran V, Xia Q F, Hwang C S and Yang J J 2018 An artificial nociceptor based on a diffusive memristor Nat. Commun. 9 417
[94] LiuLA,ZhaoJH,CaoG,ZhengSKandYan XB2021A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing Adv. Mater. Technol. 6 2100373
[95] ShiKL,HengSZ,WangXJ,LiuSY, CuiHY, ChenCS, Zhu Y X, Xu W G, Wan CJandWan Q 2022An oxide based spiking thermoreceptor for low-power thermography edge detection IEEE Electron Device Lett. 43 2196–9
[96] Zhu J X, Zhang X M, Wang R, Wang M, Chen P, Cheng L L, Wu Z H, Wang Y Z, Liu Q and Liu M 2022 A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification Adv. Mater. 34 2200481
[97] Zhou F C et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776–82
[98] ChenCS,HeYL,MaoHW, ZhuL,WangXJ,ZhuY, Zhu Y X, Shi Y, Wan C J and Wan Q 2022 A photoelectric spiking neuron for visual depth perception Adv. Mater. 34 2201895
[99] Gao B et al 2022 Memristor-based analogue computing for brain-inspired sound localization with in situ training Nat. Commun. 13 2026
[100] Duan Q X, Zhang T, Liu C, Yuan R, Li G, Jun Tiw P, Yang K, Ge C, Yang Y C and Huang R 2022 Artificial multisensory neurons with fused haptic and temperature perception for multimodal in-sensor computing Adv. Intell. Syst. 4 2200039
[101] Han J-K, Yun S-Y, Yu J-M, Jeon S-B and Choi Y-K 2023 Artificial multisensory neuron with a single transistor for multimodal perception through hybrid visual and thermal sensing ACS Appl. Mater. Interfaces 15 5449–55
[102] Wang Y et al 2021 MXene-ZnO memristor for multimodal in-sensor computing Adv. Funct. Mater. 31 2100144
[103] Wan C J, Cai P Q, Guo X T, Wang M, Matsuhisa N, Yang L, Lv Z S, Luo Y F, Loh X J and Chen X D 2020 An artificial sensory neuron with visual-haptic fusion Nat. Commun. 11 4602
[104] Chen S, Lou Z, Chen D and Shen G Z 2018 An artificial flexible visual memory system based on an UV-motivated memristor Adv. Mater. 30 1705400
[105] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Spatiotemporal information processing emulated by multiterminal neuro-transistor networks Adv. Mater. 31 1900903
[106] Zhong S, Zhang Y S, Zheng H, Yu F W and Zhao R 2022 Spike-based spatiotemporal processing enabled by oscillation neuron for energy-efficient artificial sensory systems Adv. Intell. Syst. 4 2200076
[107] LiuJQ,GongJD,WeiHH,LiYM,Wu HX,JiangCP, Li Y L and Xu W T 2022 A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation Nat. Commun. 13 7427
[108] JiangCP, LiuJQ,NiY, QuSD,LiuL,LiY, YangLand Xu W T 2023 Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement Nat. Commun. 14 1344
[109] GongJD,WeiHH,LiuJQ,SunL,XuZP, HuangHand Xu W T 2022 An artificial visual nerve for mimicking pupil reflex Matter 5 1578–89
[110] Li C et al 2018 Efficient and self-adaptive in-situ learning in multilayer memristor neural networks Nat. Commun. 9 2385
[111] Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J and Qian H 2020 Fully hardware-implemented memristor convolutional neural network Nature 577 641–6
[112] Wan W E et al 2022 A compute-in-memory chip based on resistive random-access memory Nature 608 504–12
[113] Lin P et al 2020 Three-dimensional memristor circuits as complex neural networks Nat. Electron. 3 225–32
[114] Williams R S 2017 What’s Next? [The end of Moore’s law]Comput. Sci. Eng. 19 7–13
[115] Xia Q F and Yang J J 2019 Memristive crossbar arrays for brain-inspired computing Nat. Mater. 18 309–23
[116] Ding K Y, Wang J J, Zhou Y X, Tian H, Lu L, Mazzarello R, Jia C L, Zhang W, Rao F and Ma E 2019 Phase-change heterostructure enables ultralow noise and drift for memory operation Science 366 210–5
[117] Ambrogio S et al 2018 Equivalent-accuracy accelerated neural-network training using analogue memory Nature 558 60–67
[118] Burr G W, Shelby R M, Di Nolfo C, Jang J W, Shenoy R S, Narayanan P, Virwani K, Giacometti E U, Kurdi B and Hwang H 2015 Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element 2014 IEEE Int. Electron Devices Meeting (IEEE) pp 3498–507
[119] Huo Q et al 2022 A computing-in-memory macro based on three-dimensional resistive random-access memory Nat. Electron. 5 469–77
[120] Cui J S, An F F, Qian J C, Wu Y X, Sloan L L, Pidaparthy S, Zuo J-M and Cao Q 2023 CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators Nat. Electron. 6 292–300
[121] Zhu K C et al 2023 Hybrid 2D-CMOS microchips for memristive applications Nature 618 57–62
[122] Fuller E J et al 2019 Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing Science 364 570–4
[123] Kim M-K, Kim I-J and Lee J-S 2022 CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks Sci. Adv. 8 eabm8537
[124] Xi Y, Gao B, Tang J S, Chen A, Chang M-F, Hu X S, Spiegel J V D, Qian H and Wu H Q 2021 In-memory learning with analog resistive switching memory: a review and perspective Proc. IEEE 109 14–42
[125] Yao X H et al 2020 Protonic solid-state electrochemical synapse for physical neural networks Nat. Commun. 11 3134
[126] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y and Ren T-L 2022 Vertical MoS2 transistors with sub-1-nm gate lengths Nature 603 259–64
[127] Ning H K et al 2023 An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning Nat. Nanotechnol. 18 493–500