• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 4, 42010 (2023)
Yixin Zhu1,2, Huiwu Mao1, Ying Zhu1, Xiangjing Wang1..., Chuanyu Fu1, Shuo Ke1, Changjin Wan1,* and and Qing Wan1,2,3|Show fewer author(s)
Author Affiliations
  • 1School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
  • 2Yongjiang Lab, Ningbo 315201, People’s Republic of China
  • 3School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/acef79 Cite this Article
    Yixin Zhu, Huiwu Mao, Ying Zhu, Xiangjing Wang, Chuanyu Fu, Shuo Ke, Changjin Wan, and Qing Wan. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42010 Copy Citation Text show less
    References

    [1] Zhu J D, Zhang T, Yang Y C and Huang R 2020 A comprehensive review on emerging artificial neuromorphic devices Appl. Phys. Rev. 7 011312

    [2] Sun B, Guo T, Zhou G D, Ranjan S, Jiao Y X, Wei L, Zhou Y N and Wu Y A 2021 Synaptic devices based neuromorphic computing applications in artificial intelligence Mater. Today Phys. 18 100393

    [3] ZhuYX,ZhuY, MaoHW, HeYL,JiangSS,ZhuL, Chen C S, Wan C J and Wan Q 2022 Recent advances in emerging neuromorphic computing and perception devices J. Appl. Phys. 55 053002

    [4] Sokolov A S, Abbas H, Abbas Y and Choi C 2021 Towards engineering in memristors for emerging memory and neuromorphic computing: a review J. Semicond. 42 013101

    [5] HeYL,ZhuL,ZhuY, ChenCS,JiangSS,LiuR,ShiYand Wan Q 2021 Recent progress on emerging transistor-based neuromorphic devices Adv. Intell. Syst. 3 2000210

    [6] Shastri B J, Tait A N, Ferreira De Lima T, Pernice W H P, Bhaskaran H, Wright C D and Prucnal P R 2021 Photonics for artificial intelligence and neuromorphic computing Nat. Photon. 15 102–14

    [7] Chakraborty I, Jaiswal A, Saha A K, Gupta S K and Roy K 2020 Pathways to efficient neuromorphic computing with non-volatile memory technologies Appl. Phys. Rev. 7 021308

    [8] Choi S, Yang J and Wang G 2020 Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing Adv. Mater. 32 2004659

    [9] Zhang Y et al 2020 Brain-inspired computing with memristors: challenges in devices, circuits, and systems Appl. Phys. Rev. 7 011308

    [10] Ielmini D and Wong H-S P 2018 In-memory computing with resistive switching devices Nat. Electron. 1 333–43

    [11] Akopyan F et al 2015 TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34 1537–57

    [12] Davies M et al 2018 Loihi: a neuromorphic many core processor with on-chip learning IEEE Micro 38 82–99

    [13] Indiveri G et al 2011 Neuromorphic silicon neuron circuits Front. Neurosci. 5 73

    [14] Jiang S, Nie S, He Y, Liu R, Chen C and Wan Q 2019 Emerging synaptic devices: from two-terminal memristors to multiterminal neuromorphic transistors Mater. Today Nano 8 100059

    [15] Upadhyay N K, Jiang H, Wang Z R, Asapu S, Xia Q F and Joshua Yang J 2019 Emerging memory devices for neuromorphic computing Adv. Mater. Technol. 4 1800589

    [16] Covi E, Mulaosmanovic H, Max B, Slesazeck S and Mikolajick T 2022 Ferroelectric-based synapses and neurons for neuromorphic computing Neuromorph. Comput. Eng. 2 012002

    [17] RenYY, SunRY, ChenSHY,DuCY,HanSTandZhouY 2021 Exploring phase-change memory: from material systems to device physics Phys. Status Solidi 15 2000394

    [18] Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L and Huang J 2019 Recent advances in transistor-based artificial synapses Adv. Funct. Mater. 29 1903700

    [19] Sun K X, Chen J S and Yan X B 2021 The future of memristors: materials engineering and neural networks Adv. Funct. Mater. 31 2006773

    [20] Sun F Q, Lu Q F, Feng S M and Zhang T 2021 Flexible artificial sensory systems based on neuromorphic devices ACS Nano 15 3875–99

    [21] Woo J, Kim J H, Im J-P and Moon S E 2020 Recent advancements in emerging neuromorphic device technologies Adv. Intell. Syst. 2 2000111

    [22] Wan Q 2023 Neuromorphic devices for brain-like computing J. Inorg. Mater. 38 365–6

    [23] WangSY, LiuXX,XuMS,LiuLW, YangDRandZhouP 2022 Two-dimensional devices and integration towards the silicon lines Nat. Mater. 21 1225–39

    [24] Wan CJ,LiuYH,ZhuLQ,FengP, ShiYandWan Q2016 Short-term synaptic plasticity regulation in solution-gated indium–gallium–zinc-oxide electric-double-layer transistors ACS Appl. Mater. Interfaces 8 9762–8

    [25] ZhuLQ,Wan CJ,GuoLQ,ShiYandWan Q2014 Artificial synapse network on inorganic proton conductor for neuromorphic systems Nat. Commun. 5 3158

    [26] Wan X, Yang Y, Feng P, Shi Y and Wan Q 2016 Short-term plasticity and synaptic filtering emulated in electrolyte-gated IGZO transistors IEEE Electron Device Lett. 37 299–302

    [27] He Y L, Yang Y, Nie S, Liu R and Wan Q 2018 Electric-double-layer transistors for synaptic devices and neuromorphic systems J. Mater. Chem. C 6 5336–52

    [28] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80–83

    [29] Chang T, Jo S-H, Kim K-H, Sheridan P, Gaba S and Lu W 2011 Synaptic behaviors and modeling of a metal oxide memristive device Appl. Phys. A 102 857–63

    [30] Covi E, Brivio S, Serb A, Prodromakis T, Fanciulli M and Spiga S 2016 HfO2-based memristors for neuromorphic applications 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS) (IEEE) pp 393–6

    [31] Wang Z R et al 2017 Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing Nat. Mater. 16 101–8

    [32] Chen L, He Z-Y, Wang T-Y, Dai Y-W, Zhu H, Sun Q-Q and Zhang D W 2018 CMOS compatible bio-realistic implementation with Ag/HfO2-based synaptic nanoelectronics for artificial neuromorphic system Electronics 7 80

    [33] Kim C, Lee Y, Kim S, Kang M and Kim S 2023 Diverse synaptic weight adjustment of bio-inspired ZrOx-based memristors for neuromorphic system Mater. Sci. Semicond. Process. 157 107314

    [34] XiZN,RuanJJ,LiC,ZhengCY, Wen Z,DaiJY, LiAD and Wu D 2017 Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier Nat. Commun. 8 15217

    [35] Ryu H and Kim S 2020 Pseudo-interface switching of a two-terminal TaOx/HfO2 synaptic device for neuromorphic applications Nanomaterials 10 1550

    [36] Mahata C, Lee C, An Y, Kim M-H, Bang S, Kim C S, Ryu J-H, Kim S, Kim H and Park B-G 2020 Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems J. Alloys Compd. 826 154434

    [37] Oh S, Kim T, Kwak M, Song J, Woo J, Jeon S, Yoo I K and Hwang H 2017 HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications IEEE Electron Device Lett. 38 732–5

    [38] Chen L, Wang T-Y, Dai Y-W, Cha M-Y, Zhu H, Sun Q-Q, Ding S-J, Zhou P, Chua L and Zhang D W 2018 Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications Nanoscale 10 15826–33

    [39] Yoon C,LeeJH,LeeS,JeonJH,JangJT, KimDH, Kim Y H and Park B H 2017 Synaptic plasticity selectively activated by polarization-dependent energy-efficient ion migration in an ultrathin ferroelectric tunnel junction Nano Lett. 17 1949–55

    [40] Boyn S et al 2017 Learning through ferroelectric domain dynamics in solid-state synapses Nat. Commun. 8 14736

    [41] Ryu H, Wu H N, Rao F B and Zhu W J 2019 Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing Sci. Rep. 9 20383

    [42] ZhuY, HeYL,ChenCS,ZhuL,MaoHW, ZhuYX, WangX J, YangY, Wan C J and Wan Q 2022 HfZrOx-based capacitive synapses with highly linear and symmetric multilevel characteristics for neuromorphic computing Appl. Phys. Lett. 120 113504

    [43] LiuJ,YangHF, MaZY, ChenKJ,HuangXFandWangK 2020 HfO2/TiOx bilayer structure memristor with linear conductance tuning for high density memory and neuromorphic computing J. Appl. Phys. 128 184902

    [44] Jang J T, Kim D, Choi W S, Choi S-J, Kim D M, Kim Y and Kim D H 2020 One transistor–two memristor based on amorphous indium–gallium–zinc-oxide for neuromorphic synaptic devices ACS Appl. Electron. Mater. 2 2837–44

    [45] LiuQ,GaoS,LiY, Yue WJ,ZhangCW, KanHand Shen G Z 2023 HfO2/WO3 heterojunction structured memristor for high-density storage and neuromorphic computing Adv. Mater. Technol. 8 2201143

    [46] MaZL,GeJ,ChenWJ,CaoXC,DiaoSQ,LiuZYand Pan S S 2022 Reliable memristor based on ultrathin native silicon oxide ACS Appl. Mater. Interfaces 14 21207–16

    [47] Woo J, Padovani A, Moon K, Kwak M, Larcher L and Hwang H 2017 Linking conductive filament properties and evolution to synaptic behavior of RRAM devices for neuromorphic applications IEEE Electron Device Lett. 38 1220–3

    [48] Woo J, Moon K, Song J, Lee S, Kwak M, Park J and Hwang H 2016 Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems IEEE Electron Device Lett. 37 994–7

    [49] BaoL,FangYC,WangZW, KangJ,YangYC,Xu JT, Cai Y M and Huang R 2018 Study on microscopic model of resistive switching in amorphous tantalum pentoxide from first-principle calculations 2018 China Semiconductor Technology Int. Conf. (CSTIC) (IEEE) pp 1–3

    [50] LinY, ZengT, XuHY, WangZQ,ZhaoXN,LiuWZ, Ma J G and Liu Y C 2018 Transferable and flexible artificial memristive synapse based on WOx Schottky junction on arbitrary substrates Adv. Electron. Mater. 4 1800373

    [51] Kulkarni S R, Kadetotad D V, Yin S H, Seo J S and Rajendran B 2019 Neuromorphic hardware accelerator for SNN inference based on STT-RAM crossbar arrays 2019 26th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS) (IEEE) pp 438–41

    [52] Park J 2020 Neuromorphic computing using emerging synaptic devices: a retrospective summary and an outlook Electronics 9 1414

    [53] Kim I-J and Lee J-S 2023 Ferroelectric transistors for memory and neuromorphic device applications Adv. Mater. 35 2206864

    [54] Mikolajick T, Park M H, Begon-Lours L and Slesazeck S 2023 From ferroelectric material optimization to neuromorphic devices Adv. Mater. 2206042

    [55] ZhuYX,LiuGX,XinZJ,FuCY, Wan QandShanFK 2020 Solution-processed, electrolyte-gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications ACS Appl. Mater. Interfaces 12 1061–8

    [56] Guo X, Bayat F M, Bavandpour M, Klachko M, Mahmoodi M R, Prezioso M, Likharev K K and Strukov D B 2017 Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology 2017 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 6.5.1–4

    [57] Malavena G, Spinelli A S and Compagnoni C M 2018 Implementing spike-timing-dependent plasticity and unsupervised learning in a mainstream NOR flash memory array 2018 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 2.3.1–4

    [58] Wan CJ,LiBJ,FengP, ZhuLQ,ShiYandWan Q2016 Indium-zinc-oxide neuron thin film transistors laterally coupled by sodium alginate electrolytes IEEE Trans. Electron Devices 63 3958–63

    [59] ZhuYX,MaoHW, ZhuY, ZhuL,ChenCS,WangXJ, Ke S, Fu C Y, Wan C J and Wan Q 2022 Photoelectric synapse based on InGaZnO nanofibers for high precision neuromorphic computing IEEE Electron Device Lett. 43 651–4

    [60] JiangSS,HeYL,LiuR,ChenCS,ZhuL,ZhuY, ShiYand Wan Q 2021 Freestanding dual-gate oxide-based neuromorphic transistors for flexible artificial nociceptors IEEE Trans. Electron Devices 68 415–20

    [61] ZhuYX et al 2022 IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity Appl. Phys. Lett. 121 133502

    [62] Jiang J, Wan Q, Sun J and Lu A X 2009 Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature Appl. Phys. Lett. 95 152114

    [63] HeYL,LiuR,JiangSS,ChenCS,ZhuL,ShiYand Wan Q 2020 IGZO-based floating-gate synaptic transistors for neuromorphic computing J. Phys. D: Appl. Phys. 53 215106

    [64] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Dual-functional long-term plasticity emulated in IGZO-based photoelectric neuromorphic transistors IEEE Electron Device Lett. 40 818–21

    [65] Ke S,FuCY, LinXH,ZhuYX,MaoHW, ZhuL, WangX J, Chen C S, Wan C J and Wan Q 2022 BCM learning rules emulated by a-IGZO-based photoelectronic neuromorphic transistors IEEE Trans. Electron Devices 69 4646–50

    [66] YangY, CuiHY, Ke S,PeiMJ,ShiKL,Wan CJand Wan Q 2023 Reservoir computing based on electric-double-layer coupled InGaZnO artificial synapse Appl. Phys. Lett. 122 043508

    [67] Kim M-K, Kim I-J and Lee J-S 2021 Oxide semiconductor-based ferroelectric thin-film transistors for advanced neuromorphic computing Appl. Phys. Lett. 118 032902

    [68] Kim I-J, Kim M-K and Lee J-S 2023 Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks Nat. Commun. 14 504

    [69] KimJP et al 2023 Dielectric-engineered high-speed, low-power, highly reliable charge trap flash-based synaptic device for neuromorphic computing beyond inference Nano Lett. 23 451–61

    [70] Park J, Jang Y, Lee J, An S, Mok J and Lee S-Y 2023 Synaptic transistor based on In-Ga-Zn-O channel and trap layers with highly linear conductance modulation for neuromorphic computing Adv. Electron. Mater. 9 2201306

    [71] Seo Y-T, Lee M-S, Kim C-H, Woo S Y, Bae J-H, Park B-G and Lee J-H 2019 Si-based FET-type synaptic device with short-term and long-term plasticity using high-κ gate-stack IEEE Trans. Electron Devices 66 917–23

    [72] Yu J-M, Han J-K and Choi Y-K 2022 Mimicking biological synaptic plasticity with a leaky charge-trap FinFET J. Mater. Chem. C 10 9961–7

    [73] Jerry M, Chen P Y, Zhang J, Sharma P, Ni K, Yu S M and Datta S 2017 Ferroelectric FET analog synapse for acceleration of deep neural network training 2017 IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 6.2.1–4

    [74] Zhang X M et al 2018 An artificial neuron based on a threshold switching memristor IEEE Electron Device Lett. 39 308–11

    [75] Beck M E, Shylendra A, Sangwan V K, Guo S L, Gaviria Rojas W A, Yoo H, Bergeron H, Su K, Trivedi A R and Hersam M C 2020 Spiking neurons from tunable Gaussian heterojunction transistors Nat. Commun. 11 1565

    [76] Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 A scalable neuristor built with Mott memristors Nat. Mater. 12 114–7

    [77] HuaQL,Wu HQ,GaoB,ZhaoMR,LiYJ,LiXY, HouX, Chang M-F, Zhou P and Qian H 2019 A threshold switching selector based on highly ordered Ag nanodots for X-point memory applications Adv. Sci. 6 1900024

    [78] Wang Z R et al 2018 Fully memristive neural networks for pattern classification with unsupervised learning Nat. Electron. 1 137–45

    [79] Zhang X M et al 2021 Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks Sci. Bull. 66 1624–33

    [80] Zhang Y X, Fang Z L and Yan X B 2022 HfO2-based memristor-CMOS hybrid implementation of artificial neuron model Appl. Phys. Lett. 120 213502

    [81] Hua Q L, Jiang C S and Hu W G 2021 Ag/HfO2-based threshold switching memristor as an oscillatory neuron 2021 5th IEEE Electron Devices Technology & Manufacturing Conf. (EDTM) (IEEE) pp 1–3

    [82] Cao R et al 2022 Compact artificial neuron based on anti-ferroelectric transistor Nat. Commun. 13 7018

    [83] Park M-K, Yoo H-N, Seo Y-T, Woo S Y, Bae J-H, Park B-G and Lee J-H 2020 Field effect transistor-type devices using high-κ gate insulator stacks for neuromorphic applications ACS Appl. Electron. Mater. 2 323–8

    [84] Wang D et al 2022 Synergy of spin-orbit torque and built-in field in magnetic tunnel junctions with tilted magnetic anisotropy: toward tunable and reliable spintronic neurons Adv. Sci. 9 2203006

    [85] Wang D et al 2023 Spintronic leaky-integrate-fire spiking neurons with self-reset and winner-takes-all for neuromorphic computing Nat. Commun. 14 1068

    [86] Li X et al 2020 Power-efficient neural network with artificial dendrites Nat. Nanotechnol. 15 776–82

    [87] Sengupta A and Roy K 2017 Encoding neural and synaptic functionalities in electron spin: a pathway to efficient neuromorphic computing Appl. Phys. Rev. 4 041105

    [88] Moore J J, Ravassard P M, Ho D, Acharya L, Kees A L, Vuong C and Mehta M R 2017 Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats Science 355 eaaj1497

    [89] Trenholm S, McLaughlin A J, Schwab D J, Turner M H, Smith R G, Rieke F and Awatramani G B 2014 Nonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlations Nat. Neurosci. 17 1759–66

    [90] Lavzin M, Rapoport S, Polsky A, Garion L and Schiller J 2012 Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo Nature 490 397–401

    [91] Wan TQ,MaSJ,LiaoFY, Fan LWandChaiY2022 Neuromorphic sensory computing Sci. China Inf. Sci. 65 141401

    [92] Ji X L, Zhao X Y, Tan M C and Zhao R 2020 Artificial perception built on memristive system: visual, auditory, and tactile sensations Adv. Intell. Syst. 2 1900118

    [93] Yoon J H, Wang Z R, Kim K M, Wu H Q, Ravichandran V, Xia Q F, Hwang C S and Yang J J 2018 An artificial nociceptor based on a diffusive memristor Nat. Commun. 9 417

    [94] LiuLA,ZhaoJH,CaoG,ZhengSKandYan XB2021A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing Adv. Mater. Technol. 6 2100373

    [95] ShiKL,HengSZ,WangXJ,LiuSY, CuiHY, ChenCS, Zhu Y X, Xu W G, Wan CJandWan Q 2022An oxide based spiking thermoreceptor for low-power thermography edge detection IEEE Electron Device Lett. 43 2196–9

    [96] Zhu J X, Zhang X M, Wang R, Wang M, Chen P, Cheng L L, Wu Z H, Wang Y Z, Liu Q and Liu M 2022 A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification Adv. Mater. 34 2200481

    [97] Zhou F C et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776–82

    [98] ChenCS,HeYL,MaoHW, ZhuL,WangXJ,ZhuY, Zhu Y X, Shi Y, Wan C J and Wan Q 2022 A photoelectric spiking neuron for visual depth perception Adv. Mater. 34 2201895

    [99] Gao B et al 2022 Memristor-based analogue computing for brain-inspired sound localization with in situ training Nat. Commun. 13 2026

    [100] Duan Q X, Zhang T, Liu C, Yuan R, Li G, Jun Tiw P, Yang K, Ge C, Yang Y C and Huang R 2022 Artificial multisensory neurons with fused haptic and temperature perception for multimodal in-sensor computing Adv. Intell. Syst. 4 2200039

    [101] Han J-K, Yun S-Y, Yu J-M, Jeon S-B and Choi Y-K 2023 Artificial multisensory neuron with a single transistor for multimodal perception through hybrid visual and thermal sensing ACS Appl. Mater. Interfaces 15 5449–55

    [102] Wang Y et al 2021 MXene-ZnO memristor for multimodal in-sensor computing Adv. Funct. Mater. 31 2100144

    [103] Wan C J, Cai P Q, Guo X T, Wang M, Matsuhisa N, Yang L, Lv Z S, Luo Y F, Loh X J and Chen X D 2020 An artificial sensory neuron with visual-haptic fusion Nat. Commun. 11 4602

    [104] Chen S, Lou Z, Chen D and Shen G Z 2018 An artificial flexible visual memory system based on an UV-motivated memristor Adv. Mater. 30 1705400

    [105] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Spatiotemporal information processing emulated by multiterminal neuro-transistor networks Adv. Mater. 31 1900903

    [106] Zhong S, Zhang Y S, Zheng H, Yu F W and Zhao R 2022 Spike-based spatiotemporal processing enabled by oscillation neuron for energy-efficient artificial sensory systems Adv. Intell. Syst. 4 2200076

    [107] LiuJQ,GongJD,WeiHH,LiYM,Wu HX,JiangCP, Li Y L and Xu W T 2022 A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation Nat. Commun. 13 7427

    [108] JiangCP, LiuJQ,NiY, QuSD,LiuL,LiY, YangLand Xu W T 2023 Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement Nat. Commun. 14 1344

    [109] GongJD,WeiHH,LiuJQ,SunL,XuZP, HuangHand Xu W T 2022 An artificial visual nerve for mimicking pupil reflex Matter 5 1578–89

    [110] Li C et al 2018 Efficient and self-adaptive in-situ learning in multilayer memristor neural networks Nat. Commun. 9 2385

    [111] Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J and Qian H 2020 Fully hardware-implemented memristor convolutional neural network Nature 577 641–6

    [112] Wan W E et al 2022 A compute-in-memory chip based on resistive random-access memory Nature 608 504–12

    [113] Lin P et al 2020 Three-dimensional memristor circuits as complex neural networks Nat. Electron. 3 225–32

    [114] Williams R S 2017 What’s Next? [The end of Moore’s law]Comput. Sci. Eng. 19 7–13

    [115] Xia Q F and Yang J J 2019 Memristive crossbar arrays for brain-inspired computing Nat. Mater. 18 309–23

    [116] Ding K Y, Wang J J, Zhou Y X, Tian H, Lu L, Mazzarello R, Jia C L, Zhang W, Rao F and Ma E 2019 Phase-change heterostructure enables ultralow noise and drift for memory operation Science 366 210–5

    [117] Ambrogio S et al 2018 Equivalent-accuracy accelerated neural-network training using analogue memory Nature 558 60–67

    [118] Burr G W, Shelby R M, Di Nolfo C, Jang J W, Shenoy R S, Narayanan P, Virwani K, Giacometti E U, Kurdi B and Hwang H 2015 Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element 2014 IEEE Int. Electron Devices Meeting (IEEE) pp 3498–507

    [119] Huo Q et al 2022 A computing-in-memory macro based on three-dimensional resistive random-access memory Nat. Electron. 5 469–77

    [120] Cui J S, An F F, Qian J C, Wu Y X, Sloan L L, Pidaparthy S, Zuo J-M and Cao Q 2023 CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators Nat. Electron. 6 292–300

    [121] Zhu K C et al 2023 Hybrid 2D-CMOS microchips for memristive applications Nature 618 57–62

    [122] Fuller E J et al 2019 Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing Science 364 570–4

    [123] Kim M-K, Kim I-J and Lee J-S 2022 CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks Sci. Adv. 8 eabm8537

    [124] Xi Y, Gao B, Tang J S, Chen A, Chang M-F, Hu X S, Spiegel J V D, Qian H and Wu H Q 2021 In-memory learning with analog resistive switching memory: a review and perspective Proc. IEEE 109 14–42

    [125] Yao X H et al 2020 Protonic solid-state electrochemical synapse for physical neural networks Nat. Commun. 11 3134

    [126] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y and Ren T-L 2022 Vertical MoS2 transistors with sub-1-nm gate lengths Nature 603 259–64

    [127] Ning H K et al 2023 An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning Nat. Nanotechnol. 18 493–500

    Yixin Zhu, Huiwu Mao, Ying Zhu, Xiangjing Wang, Chuanyu Fu, Shuo Ke, Changjin Wan, and Qing Wan. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42010
    Download Citation