[1] et alInvestigation on factors associated with ovarian cancer: an umbrella review of systematic review and meta-analyses. J. Ovarian Res., 14, 153(2021).
[2] et alFuture screening prospects for ovarian cancer. Cancers, 13, 3840(2021).
[3] et alThe gold standard paradox in digital image analysis: manual versus automated scoring as ground truth. Arch. Pathol. Lab. Med., 141, 1267-1275(2017).
[4] et alArtificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine. Radiol. Bras., 52, 387-396(2019).
[5] Pathogenesis and heterogeneity of ovarian cancer. Curr. Opin. Obstet. Gynecol., 29, 26-34(2017).
[6] et alSelection of representative histologic slides in interobserver reproducibility studies: insights from expert review for ovarian carcinoma subtype classification. J. Pathol. Inform., 12, 15(2021).
[7] et alAn improved calibration technique for polarization images. IEEE Access, 7, 28651-28662(2019).
[8] et alMueller matrix polarimetry — an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightw. Technol., 37, 2534-2548(2019).
[9] et alQuantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express, 8, 3643-3655(2017).
[10] et alQuantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry. Proc. SPIE, 10467, 104670Y(2018).
[11] et alPolarimetry feature parameter deriving from Mueller matrix imaging and auto-diagnostic significance to distinguish HSIL and CSCC. J. Innov. Opt. Health Sci., 15, 2142008(2022).
[12] et alA polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging, 40, 3728-3738(2021).
[13] Diversity in machine learning. IEEE Access, 7, 64323-64350(2019).
[14] et alFast Mueller matrix microscope based on dual DoFP polarimeters. Opt. Lett., 46, 1676-1679(2021).
[15] et alDivision of focal plane polarimeter-based 3l DoFP polarimeterstitative pathological diagnosis of cervical precancerous lesionsCCMueller. J. Biomed. Opt., 21, 056002(2016).
[16] Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A, 13, 1106-1113(1996).
[17] et alA possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien. Photonics Lasers Med., 2, 129-137(2013).
[18] . Optical Polarization in Biomedical Applications(2006).
[19] et alPolaromics: deriving polarization parameters from a Mueller matrix for quantitative characterization of biomedical specimen. J. Phys. D, Appl. Phys., 55, 034002(2021).
[20] et alSeparating azimuthal orientation dependence in polarization measurements of anisotropic media. Opt. Express, 26, 3791-3800(2018).
[21] Relationships between elements of the Stokes matrix. Appl. Opt., 20, 2811-2814(1981).
[22] A retrospective study of the epidemiology and histological subtypes of ovarian epithelial neoplasms at Charlotte Maxeke Johannesburg Academic Hospital. South. Afr. J. Gynaecol. Oncol., 13, 26-35(2021).
[23] et alEx vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt., 20, 056012(2015).
[24] et alMueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt., 19, 076013(2014).
[25] et alManagement of borderline ovarian tumors: Series of case report and review of the literature. Indian J. Surg., 83, 617-624(2021).
[26] The pathology of and controversial aspects of ovarian borderline tumours. Curr. Opin. Oncol., 22, 462-472(2010).
[27] Artificial intelligence as the next step towards precision pathology. J. Intern. Med., 288, 62-81(2020).
[28] . Hysterectomy, I. Alkatout, L.Mettler, 155-159(2018).