• Advanced Photonics
  • Vol. 6, Issue 4, 046006 (2024)
Junlin Yang, Qianyi Li, Shiqiao Liu, Debao Fang..., Jingyao Zhang, Haibo Jin* and Jingbo Li*|Show fewer author(s)
Author Affiliations
  • Beijing Institute of Technology, School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, China
  • show less
    DOI: 10.1117/1.AP.6.4.046006 Cite this Article Set citation alerts
    Junlin Yang, Qianyi Li, Shiqiao Liu, Debao Fang, Jingyao Zhang, Haibo Jin, Jingbo Li, "Temperature-adaptive metasurface radiative cooling device with excellent emittance and low solar absorptance for dynamic thermal regulation," Adv. Photon. 6, 046006 (2024) Copy Citation Text show less
    References

    [1] T. Li et al. A radiative cooling structural material. Science, 364, 760-763(2019).

    [2] Y. Peng et al. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain., 5, 339-347(2021).

    [3] K. Tang et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science, 374, 1504-1509(2021).

    [4] S. Wang et al. Scalable thermochromic smart windows with passive radiative cooling regulation. Science, 374, 1501-1504(2021).

    [5] X. Ao et al. Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space. Proc. Natl. Acad. Sci. U. S. A., 119, 2120557119(2022).

    [6] K. Lin et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science, 382, 691-697(2023).

    [7] X. Zhao et al. A solution-processed radiative cooling glass. Science, 382, 684-691(2023).

    [8] B. Svetozarevic et al. Dynamic photovoltaic building envelopes for adaptive energy and comfort management. Nat. Energy, 4, 671-682(2019).

    [9] J. Yang, X. Hao. Electrocaloric effect and pyroelectric performance in (K,Na)NbO3‐based lead‐free ceramics. J. Am. Ceram. Soc., 102, 6817-6826(2019). https://doi.org/10.1111/jace.16598

    [10] J. Yang et al. Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary. J. Mater. Chem. C, 8, 4030-4039(2020).

    [11] J. Yang et al. Enhanced electrocaloric effect of relaxor potassium sodium niobate lead-free ceramic via multilayer structure. Scr. Mater., 193, 97-102(2021).

    [12] C. Zhou et al. Transparent bamboo with high radiative cooling targeting energy savings. ACS Mater. Lett., 3, 883-888(2021).

    [13] S. P. Liu et al. A scalable microstructure photonic coating fabricated by roll-to-roll “defects” for daytime subambient passive radiative cooling. Nano Lett., 23, 7767-7774(2023).

    [14] J. Yun et al. Optimally designed multimaterial microparticle-polymer composite paints for passive daytime radiative cooling. ACS Photonics, 10, 2608-2617(2023).

    [15] P. Li et al. Thermo‐optically designed scalable photonic films with high thermal conductivity for subambient and above‐ambient radiative cooling. Adv. Funct. Mater., 32, 2109542(2021).

    [16] B. Zhu et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol., 16, 1342-1348(2021).

    [17] X. Wang et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater., 30, 1907562(2019).

    [18] Y. Tian et al. Surface photon‐engineered infrared‐black metametal enabled enhancement of heat dissipation. Adv. Funct. Mater., 32, 2205016(2022).

    [19] D. Zhao, H. Tang. Staying stably cool in the sunlight. Science, 382, 644-645(2023).

    [20] Z. Xu et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser Photonics Rev., 14, 1900162(2019).

    [21] J. Li et al. Printable, emissivity-adaptive and albedo-optimized covering for year-round energy saving. Joule, 7, 2552-2567(2023).

    [22] J. Gu et al. VO2-based infrared radiation regulator with excellent dynamic thermal management performance. ACS Appl. Mater. Interfaces, 14, 2683-2690(2022). https://doi.org/10.1021/acsami.1c17914

    [23] X. Xu et al. Passive and dynamic phase-change-based radiative cooling in outdoor weather. ACS Appl. Mater. Interfaces, 14, 14313-14320(2022).

    [24] R. Beaini et al. Thermochromic VO2-based smart radiator devices with ultralow refractive index cavities for increased performance. Sol. Energ. Mater. Sol. C, 205, 110260(2020). https://doi.org/10.1016/j.solmat.2019.110260

    [25] L. Liu et al. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun., 7, 13236(2016).

    [26] S. Abdollahramezani et al. Dynamic hybrid metasurfaces. Nano Lett., 21, 1238-1245(2021).

    [27] C. Zou et al. Metal‐loaded dielectric resonator metasurfaces for radiative cooling. Adv. Opt. Mater., 5, 1700460(2017).

    [28] K. C. S. Ly et al. A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater., 32, 2203789(2022).

    [29] T. Paik et al. Solution-processed phase-change VO2 metamaterials from colloidal vanadium oxide (VOx) nanocrystals. ACS Nano, 8, 797-806(2014). https://doi.org/10.1021/nn4054446

    [30] J. K. Pradhan et al. High contrast switchability of VO2-based metamaterial absorbers with ITO ground plane. Opt. Express, 25, 9116-9121(2017). https://doi.org/10.1364/OE.25.009116

    [31] K. Sun et al. VO2 thermochromic metamaterial-based smart optical solar reflector. ACS Photonics, 5, 2280-2286(2018). https://doi.org/10.1021/acsphotonics.8b00119

    [32] J. Zou et al. Multiband metamaterial selective absorber for infrared stealth. Appl. Opt., 59, 8768-8772(2020).

    [33] J. Agassi. The Kirchhoff-Planck radiation law. Science, 156, 30-37(1967).

    [34] T. J. Bright et al. Optical properties of HfO2 thin films deposited by magnetron sputtering: from the visible to the far-infrared. Thin Solid Films, 520, 6793-6802(2012). https://doi.org/10.1016/j.tsf.2012.07.037

    [35] A. Sakurai et al. Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model. J. Quant. Spectrosc. Radiat., 149, 33-40(2014).

    [36] W. Yang et al. All-dielectric metasurface for high-performance structural color. Nat. Commun., 11, 1864(2020).

    [37] J. Yang et al. Optimizing phase transition temperature and visible transmittance of VO2 films driven by synergistic effect of La-Mo co-doping. Appl. Surf. Sci., 600, 154074(2022). https://doi.org/10.1016/j.apsusc.2022.154074

    [38] A. Hendaoui et al. Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films. Appl. Phys. Lett., 102, 061107(2013). https://doi.org/10.1063/1.4792277

    [39] A. Hendaoui et al. VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts. Sol. Energ. Mater. Sol. C, 117, 494-498(2013). https://doi.org/10.1016/j.solmat.2013.07.023

    [40] X. Wang et al. Fabrication of VO2-based multilayer structure with variable emittance. Appl. Surf. Sci., 344, 230-235(2015). https://doi.org/10.1016/j.apsusc.2015.03.116

    [41] K. Sun et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft. ACS Photonics, 5, 495-501(2017).

    [42] H. Kim et al. VO2-based switchable radiator for spacecraft thermal control. Sci. Rep., 9, 11329(2019). https://doi.org/10.1038/s41598-019-47572-z

    [43] S. Taylor et al. Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling. Sol. Energ. Mater. Sol. C, 217, 110739(2020).

    [44] X. Wu et al. Passive smart thermal control coatings incorporating CaF2/VO2 core-shell microsphere structures. Nano Lett., 21, 3908-3914(2021). https://doi.org/10.1021/acs.nanolett.1c00454

    [45] K. Sun et al. Room temperature phase transition of W‐doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substrates. Adv. Opt. Mater., 10, 2201326(2022). https://doi.org/10.1002/adom.202201326

    [46] M. Liu et al. Continuous photothermal and radiative cooling energy harvesting by VO2 smart coatings with switchable broadband infrared emission. ACS Nano, 17, 9501-9509(2023). https://doi.org/10.1021/acsnano.3c01755

    [47] L. Long et al. Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces. ACS Photonics, 7, 2219-2227(2020). https://doi.org/10.1021/acsphotonics.0c00760

    [48] Y. B. Chen, F. C. Chiu. Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons. Opt. Express, 21, 20771-20785(2013).

    [49] B. Zhao, Z. M. Zhang. Study of magnetic polaritons in deep gratings for thermal emission control. J. Quantum Spectrosc. Radiat., 135, 81-89(2014).

    [50] E. D. Palik. Handbook of Optical Constants of Solids, 3(1998).

    Junlin Yang, Qianyi Li, Shiqiao Liu, Debao Fang, Jingyao Zhang, Haibo Jin, Jingbo Li, "Temperature-adaptive metasurface radiative cooling device with excellent emittance and low solar absorptance for dynamic thermal regulation," Adv. Photon. 6, 046006 (2024)
    Download Citation