• Remote Sensing Technology and Application
  • Vol. 39, Issue 2, 393 (2024)
Mei LU*, Jiatian LI, Wen LI, Mihong HU, and Jiaxin YANG
Author Affiliations
  • Faculty of Land Resource Engineering Kunming University of Science and Technology,Kunming 650000,China
  • show less
    DOI: 10.11873/j.issn.1004-0323.2024.2.0393 Cite this Article
    Mei LU, Jiatian LI, Wen LI, Mihong HU, Jiaxin YANG. Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification[J]. Remote Sensing Technology and Application, 2024, 39(2): 393 Copy Citation Text show less
    The flowchart to MSLRR_TWRF
    Fig. 1. The flowchart to MSLRR_TWRF
    Influence of parameter C on classification accuracy of MSLRR_TWRF method
    Fig. 2. Influence of parameter C on classification accuracy of MSLRR_TWRF method
    Influence of parameter Sf on classification accuracy of MSLRR_TWRF method
    Fig. 3. Influence of parameter Sf on classification accuracy of MSLRR_TWRF method
    Influence of parameter δr on classification accuracy of MSLRR_TWRF method
    Fig. 4. Influence of parameter δr on classification accuracy of MSLRR_TWRF method
    Indian Pines image classification results obtained by different methods
    Fig. 5. Indian Pines image classification results obtained by different methods
    PaviaU image classification results obtained by different methods
    Fig. 6. PaviaU image classification results obtained by different methods
    Salinas image classification results obtained by different methods
    Fig. 7. Salinas image classification results obtained by different methods
    数据集

    光谱范围

    /nm

    空间分辨

    率/m

    图像尺寸波段数类别数带标签样本
    Indian Pines400~2 50020×20145×1452001610 249
    PaviaU430~8601.3×1.3610×340103942 776
    Salinas400~2 5003.7×3.7512×2172041654 129
    Table 1. Dataset Description
    ClassTrainTestSVMPCAIFRFHiFiCCJSRR-VCANetSSRNMSLRR

    MSLRR_

    TWRF

    Alfalfa103638.8123.6177.4598.6167.241009098.33100
    Corn_n101 41850.6952.5675.6867.4863.8849.5374.7671.0970.92
    Corn_m1082042.2239.4162.2084.8764.3073.4973.4775.5179.52
    Corn1022727.0625.0654.8992.7341.3494.6386.6496.2196.78
    Grass_m1047375.3760.9788.1978.4895.7888.9295.8685.6786.96
    Grass_t1072084.9179.2191.1596.6095.8294.4793.3399.6498.03
    Grass_P101839.6926.6450.8498.8937.4610079.8297.7897.78
    Hay_w1046896.2097.3310096.8899.5795.7391.75100100
    Oats101014.1821.2730.7710013.77100100100100
    Soybean_n1096252.2639.9669.6785.3062.3676.1777.5484.8386.75
    Soybean_m102 44566.8963.4687.6170.4978.6965.3883.9389.9191.90
    Soybean_c1058333.1533.6377.3684.1568.0371.9079.8087.3291.56
    Wheat1019579.5678.7576.8699.3390.4099.1898.0899.4999.49
    Woods101 25591.3287.9797.9793.6496.5691.6893.4590.9197.10
    Buildings1037638.2335.2878.7089.6573.6281.4983.2991.6592.69
    stone108383.4884.7296.7599.2890.7599.5297.0295.7897.95
    OA//59.44±0.0354.60±0.0379.14±0.0381.97±0.0274.93±0.0275.49±0.0180.63±0.0487.04±0.0389.05±0.02
    AA//57.13±0.0353.11±0.0276.01±0.0589.77±0.0171.22±0.286.38±0.0187.42±0.0291.51±0.0992.96±0.08
    Kappa//54.47±0.0349.27±0.0476.51±0.0479.69±0.0371.76±0.0272.44±0.0377.97±0.0585.20±0.0487.48±0.03
    Table 2. Classification accuracy of different methods for Indian Pines
    ClassTrainTestSVMPCAIFRFHiFiCCJSRR-VCANetSSRNMSLRR

    MSLRR_

    TWRF

    Asphalt1018 63988.7966.0169.9472.0890.9870.9393.2284.8788.77
    Meadows102 08984.0965.5394.4379.3684.6276.7595.4492.1695.44
    Gravel103 05446.3557.3261.0578.4442.0787.1880.1094.9898.23
    Trees101 33554.0491.7253.8778.7967.2693.7498.2993.1588.87
    Sheets105 01985.4199.7597.4889.6266.7799.9798.6997.6999.57
    Soil101 32036.3156.2177.5377.3035.6885.6294.7784.3698.74
    Bitumen103 67242.6688.5866.6292.7360.2593.3890.8296.1199.96
    Bricks1093770.2972.4658.1372.5745.6181.2779.0792.0897.27
    Shadows1018098.8599.6449.9699.0175.2598.3499.8399.4599.66
    OA//64.87±0.0569.11±0.0574.53±0.0678.48±0.0561.05±0.0480.72±0.02392.35±0.0190.77±0.0294.98±0.02
    AA//67.42±0.0477.14±0.1869.89±0.0482.21±0.0363.17±0.287.46±0.01192.25±0.0292.76±0.0596.28±0.04
    Kappa//56.54±0.0661.40±0.0567.85±0.0672.50±0.0550.82±0.0475.52±0.0389.90±0.0287.91±0.0293.42±0.03
    Table 3. Classification accuracy of different methods for PaviaU
    ClassTestTrainSVMPCAIFRFHiFiCCJSRR-VCANetSSRNMSLRR

    MSLRR_

    TWRF

    Weeds_1101 99997.6097.1897.0399.4599.9599.8787.18100100
    Weeds_2103 71698.9398.1899.9899.4699.4799.6499.8299.68100
    fallow101 96688.3490.3599.8198.1193.5197.2295.0689.35100
    fallow_P101 38498.3198.5791.4798.9299.1799.5598.7398.6698.36
    Fallow_s102 66895.9697.0199.6397.7593.0499.5796.7296.6398.34
    stubble103 94999.8299.8899.9297.6893.5399.8099.8899.7399.95
    Celery103 56995.7393.2198.8998.8398.8698.9499.9299.5999.92
    Grapes1011 26171.6268.5697.4866.3776.5870.8982.7180.9998.43
    Soil106 19399.4797.7499.9999.7698.5298.8699.3298.02100
    Corn103 26879.9886.7199.6684.3995.6586.1696.1988.2898.27
    Lettuce_4101 05883.0087.0998.1494.0491.0095.4395.1296.77100
    Lettuce_5101 91791.8486.9897.6599.9395.6299.9597.2295.3398.59
    Lettuce_61090688.7588.4992.7199.4477.5598.7997.3198.1397.99
    Lettuce_7101 06090.9895.7591.6595.1494.1595.2598.6796.0798.51
    Vinyard_U107 25849.8049.1279.7076.8453.4277.6275.5562.2599.37
    Vinyard_T101 79797.2092.2299.9692.7599.5791.9399.8897.3999.91
    OA//82.71±0.0282.16±0.0295.07±0.0187.92±0.0384.94±0.0289.23±0.0195.07±0.0388.94±0.0199.23±0.01
    AA//89.21±0.0189.19±0.0196.48±0.0193.68±0.0191.22±0.194.34±0.0194.96±0.0393.55±0.199.23±0.08
    Kappa//80.85±0.0280.20±0.0294.52±0.0286.61±0.0383.29±0.0288.04±0.0189.50±0.0487.66±0.0199.15±0.04
    Table 4. Classification accuracy of different methods for Salinas
    方法指标训练样本数
    1020304050
    SVMOA/%59.4468.6073.2575.9778.56
    AA/%57.1364.5270.3373.2575.85
    Kappa/%54.4764.5669.7172.7575.60
    PCAOA/%54.6062.3767.6770.2572.27
    AA/%53.1159.8965.1768.0771.23
    Kappa/%49.2757.7363.5166.3368.53
    IFRFOA/%79.1489.8593.4095.3396.21
    AA/%76.0185.7092.3593.8295.59
    Kappa/%76.5188.4792.4794.6595.66
    HiFiOA/%81.9788.9091.5693.0294.36
    AA/%89.7794.0195.4396.3496.90
    Kappa/%79.6987.4190.3892.0293.54
    CCJSROA/%74.9381.5786.0388.1789.45
    AA/%71.2275.5378.7379.3480.67
    Kappa/%71.7679.0984.1586.2387.95
    R-VCANetOA/%75.4983.2386.7289.1691.05
    AA/%86.3891.3394.0195.0895.92
    Kappa/%72.4480.9984.9587.6790.12
    SSRNOA/%80.6389.8794.9295.3497.37
    AA/%87.4284.5590.1885.1991.57
    Kappav77.9788.4594.1994.7097.41
    MSLRROA/%87.0492.7594.4294.7195.08
    AA/%91.5194.9896.2296.5896.63
    Kappa/%85.2091.7093.6093.9394.35
    MSLRR_TWRFOA/%89.0594.9596.8297.6698.00
    AA/%92.9696.7197.9398.4098.59
    Kappa/%87.4894.2196.3697.3297.70
    Table 5. Classification accuracy of different training samples for Indian Pines
    方法指标训练样本数
    1020304050
    SVMOA/%64.8775.9278.4482.1183.19
    AA/%67.4275.4976.4979.7580.36
    Kappa/%56.5469.2872.3876.8978.24
    PCAOA/%69.1176.3877.4879.1981.29
    AA/%77.4781.8283.5484.8686.32
    Kappa/%61.4069.8471.3873.5076.04
    IFRFOA/%74.5386.4889.8792.8393.92
    AA/%69.8981.8985.9089.0590.74
    Kappa/%67.8582.5086.7590.5791.97
    HiFiOA/%78.4885.4187.5288.8789.92
    AA/%82.2188.2990.2991.7591.90
    Kappa/%72.5081.1883.8185.5586.68
    CCJSROA/%61.0564.6570.1675.9176.23
    AA/%63.1763.9368.4971.6072.82
    Kappa/%50.8255.5961.3568.6369.04
    R-VCANetOA/%80.7286.9790.6792.0793.53
    AA/%87.4690.9793.6194.3595.36
    Kappa/%75.5283.1787.8389.6291.58
    SSRNOA/%92.3594.4396.4996.6098.09
    AA/%92.2594.0496.3196.6798.01
    Kappa/%89.9092.6095.3295.4897.47
    MSLRROA/%90.7794.6895.5096.2496.78
    AA/%92.7695.4496.2296.9197.34
    Kappa/%87.9192.9894.0695.0395.75
    MSLRR_TWRFOA/%94.9897.4397.9498.1498.31
    AA/%96.2897.9998.4098.6798.84
    Kappa/%93.4296.6097.2897.5497.76
    Table 6. Classification accuracy of different training samples for PaviaU
    方法指标训练样本数
    1020304050
    SVMOA/%82.7184.5185.5287.2487.36
    AA/%89.2190.4691.7792.7292.94
    Kappa/%80.8582.8183.9385.8185.94
    PCAOA/%82.1684.9885.7186.3187.05
    AA/%89.1990.9991.9892.4192.94
    Kappa/%80.2083.3284.1384.7985.60
    IFRFOA/%95.0797.9898.3098.6499.05
    AA/%96.4898.4698.8699.0199.20
    Kappa/%94.5297.7698.1198.4998.95
    HiFiOA/%87.9091.3391.7992.7193.09
    AA/%93.6895.6496.0796.5996.86
    Kappa/%86.6190.3790.8891.8892.31
    CCJSROA/%84.9486.3489.3589.9290.20
    AA/%91.2291.9794.0994.3694.44
    Kappa/%83.2984.8588.1788.7689.11
    R-VCANetOA/%89.2390.3991.8393.2794.25
    AA/%94.3495.6396.3197.0697.86
    Kappa/%88.0489.3290.9292.5293.69
    SSRNOA/%90.5789.8392.4995.8996.94
    AA/%94.9696.1197.3497.7298.50
    Kappa/%89.5088.7591.6895.4296.58
    MSLRROA/%88.9490.7390.9291.7492.00
    AA/%93.5595.0395.3595.9196.10
    Kappa/%87.6889.6589.8890.7991.08
    MSLRR_TWRFOA/%99.2399.4299.6899.7499.77
    AA/%99.2399.4499.5899.6799.70
    Kappa/%99.1599.3599.6499.7199.74
    Table 7. Classification accuracy of different training samples for Salinas
    方法SVMPCAIFRFHiFiCCJSR
    Indian Pines4.963.593.6375.4464.94
    PaviaU4.201.537.7544.37155.75
    Salinas11.437.036.6048.08357.59
    方法R-VCANetSSRNMSLRRMSLRR_TWRF
    Indian Pines4 785.82947.78310.32330.06
    PaviaU16 570.74194.922 142.002 153.36
    Salinas18 093.95959.881 153.381 170.84
    Table 8. Running time of different compared methods
    Mei LU, Jiatian LI, Wen LI, Mihong HU, Jiaxin YANG. Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification[J]. Remote Sensing Technology and Application, 2024, 39(2): 393
    Download Citation