• Laser & Optoelectronics Progress
  • Vol. 61, Issue 16, 1611003 (2024)
Jiaqi Guo1,†, Benxuan Fan1,†, Xin Liu2, Yuhui Liu2..., Xuquan Wang1,3, Yujie Xing1,3, Zhanshan Wang1,3, Xiong Dun1,3,*, Yifan Peng2,** and Xinbin Cheng1,3|Show fewer author(s)
Author Affiliations
  • 1School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
  • 3Institute of Precision Optical Engineering Tongji University, MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
  • show less
    DOI: 10.3788/LOP241397 Cite this Article Set citation alerts
    Jiaqi Guo, Benxuan Fan, Xin Liu, Yuhui Liu, Xuquan Wang, Yujie Xing, Zhanshan Wang, Xiong Dun, Yifan Peng, Xinbin Cheng. Computational Spectral Imaging: Optical Encoding and Algorithm Decoding (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1611003 Copy Citation Text show less
    Main components and operating principle of computational imaging systems
    Fig. 1. Main components and operating principle of computational imaging systems
    A discretization example for the spectral image and optical coding
    Fig. 2. A discretization example for the spectral image and optical coding
    Optical systems and coding illustrations for single pixel camera. (a) Plain SPC spectral imaging; (b) CHISSS
    Fig. 3. Optical systems and coding illustrations for single pixel camera. (a) Plain SPC spectral imaging; (b) CHISSS
    Illustration of coded aperture snapshot spectral imagers. (a) DD-CASSI; (b) SD-CASSI
    Fig. 4. Illustration of coded aperture snapshot spectral imagers. (a) DD-CASSI; (b) SD-CASSI
    Illustration of the dual-camera compressive hyperspectral imager
    Fig. 5. Illustration of the dual-camera compressive hyperspectral imager
    Illustration for 3D coded aperture imagers. (a) CCA;(b) DCSI; (c) SSCSI
    Fig. 6. Illustration for 3D coded aperture imagers. (a) CCA;(b) DCSI; (c) SSCSI
    Example of point spread function encoding system structure
    Fig. 7. Example of point spread function encoding system structure
    Representative color filter array and spectral filter array
    Fig. 8. Representative color filter array and spectral filter array
    Acquisition process of multi-channel images
    Fig. 9. Acquisition process of multi-channel images
    Optical systems for spatial duplicating-based encoding. (a) Notch filters have extremely narrow stopband and are able to obtain spectral images with very high spectral resolution in corresponding bands; (b) using FPR arrays with varying thickness to achieve different SRFs, and combining them with lens arrays for spatial replication to capture multi-channel images
    Fig. 10. Optical systems for spatial duplicating-based encoding. (a) Notch filters have extremely narrow stopband and are able to obtain spectral images with very high spectral resolution in corresponding bands; (b) using FPR arrays with varying thickness to achieve different SRFs, and combining them with lens arrays for spatial replication to capture multi-channel images
    Simple illustrations for architectures of four end-to-end reconstruction neural networks. (a) Simple convolutional neural network; (b) multiscale CNN; (c) generative adversarial network; (d) self-attention operation
    Fig. 11. Simple illustrations for architectures of four end-to-end reconstruction neural networks. (a) Simple convolutional neural network; (b) multiscale CNN; (c) generative adversarial network; (d) self-attention operation
    CategoryRepresentative workAcquisition schemeEnabling deviceDesign method
    Image plane coding-SPCRef.[31],CHISSS25Multiple exposureDMD,gratingRandom coding
    Image plane coding-CASSISD-CASSI1335],DD-CASSI3437Direct imagingDisperser,coded aperture(DMD)Random coding
    Image plane coding-multiframe codingRef.[151638Multiple exposureDisperser,piezo-electric ceramicsRandom coding
    Ref.[39Multiple exposureDisperser,piezo-electric ceramicsOptimized coding function
    Ref.[3628Multiple exposureDisperser,DMDRandom coding
    DCCHI40-41Dual-camera

    Splitter,disperser,

    coded aperture

    Random coding
    Image plane coding-3D codingRef.[42-43Direct imagingDisperser,CCAOptimized coding function
    Ref.[28Multiple exposureDMD,filterRandom coding
    DCSI29Multiple exposureDMD,grating,LCoSRandom coding
    SSCSI27Direct imagingGrating,coded ape-rtureRandom coding
    PSF coding,scattering codingRef.[48Direct imagingScattering mediumRandom PSF
    PSF coding-dispersion codingRef.[4750Direct imagingDOERandom DOE surface
    Ref.[51Direct imagingDisperserDispersive PSF
    PSF coding-diffraction codingRef.[52-53Direct imagingDOEManually designed DOE
    Ref.[4655Direct imagingDOEDeeply learned DOE
    SRF coding-fixed SRFCS-MUSI762560Multiple exposurePolarizer,liquid crystalFixed SRF
    Ref.[65Multiple exposureLiquid crystal,metasurface
    Ref.[69Spatially duplicatingNotch filter
    Ref.[61Spatially duplicatingFPR array
    SRF coding-random SRFRef.[6277Direct imagingMetasurfaceRandom SRF
    SRF coding-optimized SRFRef.[70Direct imaging,Spatially duplicatingThin filmDeeply learned SRF
    BEST72-73Direct imagingMetasurface,thin film
    Ref.[75Multiple exposureThin film
    Ref.[74Direct imagingSuperposition FPR
    Image plane coding,SRF codingSCCSI26Direct imagingDisperser,CCA-SFARandom coding
    Ref.[44Multiple exposureLCTF,DMDRandom coding,fixed SRF
    PSF coding,SRF codingDiffuserCam49Direct imagingScattering medium,SFARandom PSF,fixed SRF
    Table 1. Summary of optical encoding methods
    DatasetSpectrum /nmStep /nmDimensionSizeCamera modelIllumination
    CAVE108400‒70010512×51232VariSpec Liquid Crystal Tunable Filter,Apogee Alta U260CIE Standard Illuminant D65
    Harvard109420‒720101392×104075Commercial hyperspectral camera with LCTF(Nuance FX,CRI Inc)Natural Daylight Lighting,Artificial Mixed Lighting
    NUS104400‒700101312×95066Specim PFD-CL-65-V10ENatural Light Source,Artificial Broadband Light Sources with Various Color Temperatures
    ICVL18400‒10001.251392×1300200Specim PS Kappa DX4,Rotary StageNatural Light Source
    400‒70010
    KAIST93420‒720102704×337630GS3- U3-91S6M-CXenon Lamp
    NTIRE2018110400‒700101392×1300256Specim PS Kappa DX4Natural Light Source
    NTIRE2020106400‒70010482×512460Specim IQNatural Light Source
    C2H-Data111374.1‒988.14.61392×1650697GaiaField SystemTungsten Halogen Lamp
    450‒74010
    KAUST-HS112400‒100010512×512400Specim IQNatural Light Source
    NTIRE2022107400‒70010482×5121000Specim IQNatural Light Source
    Table 2. Summary of popular datasets of spectral images
    CategoryAlgorithmRelated workPrior type

    Sparse

    approximation

    OMPRef.[8118Γθ=θ0
    GPSRRef.[132638Γθ=θ1
    TVrestrictionGAP-TVRef.[14Γ˜I=ΓaTVI
    TwISTRef.[163640Γ˜I=ΓiTVI
    Low rank structureADMMRef.[8889ΓI=iZi*
    Tensor decompositionADMMRef.[9192Restriction of tensor decomposition
    Learned PriorADMMRef.[93Learned auto-encoder
    SGDRef.[9495Restriction of tensor decomposition,low-dimensional manifold
    Unrolled HQSRef.[19100Neural network
    Unrolled ADMMRef.[9698Neural network
    Unrolled GAPRef.[97Neural network
    Table 3. Summary of spectral reconstruction algorithms based on physical model and prior knowledge
    CategoryRelated workOptical systemKey ingredient
    CNNHSCNN20RGB/CASSI
    HCSNN+96RGBResidual connection,dense connection
    HyperReconNet104CASSI2D-3D convolution
    BTR-Net130SRF codedFunctional sub-networks
    Wang et al.62SRF codedResidual connection

    Multiscale

    CNN

    Galliani et al.79RGBDense connection
    Yan et al.110RGBPixel shuffle
    C2H-Net111RGBExtra class/location information
    DeepCubeNet104SRF coded
    Baek et al.46PSF coded
    GANAlvarez et al.97RGB
    R2H-GAN113RGBExtra spectral discriminator
    Lambda-Net112CASSISelf attention

    Attention-based

    networks

    HRNet115RGBDense connection,self attention
    AWAN116RGBSelf attention,SRF-aware
    HDRAN117RGB2D-3D self attention,restriction of tensor decomposition
    HD-Net118CASSIFrequency domain supervision
    TSA-Net119CASSIIndependent 3D attention
    SDNet120SRF codedUnsupervised training by resampling
    GMSR121RGBMamba architecture
    TransformerMST122CASSICoding function-aware
    CST123CASSIClustering,coarse-to-fine reconstruction
    ST++124RGBCoarse-to-fine reconstruction
    TCSSA125RGBConvolutional spectral self attention
    Table 4. Summary of end-to-end spectral reconstruction methods
    Jiaqi Guo, Benxuan Fan, Xin Liu, Yuhui Liu, Xuquan Wang, Yujie Xing, Zhanshan Wang, Xiong Dun, Yifan Peng, Xinbin Cheng. Computational Spectral Imaging: Optical Encoding and Algorithm Decoding (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1611003
    Download Citation