[1] N. V. Studentsov, P. N. Selivanov. The international system of units as a regular development of the metric-system of measurement. Meas. Techn., 26, 176-181(1983).
[2] S. A. Diddams, J. C. Bergquist, S. R. Jefferts. Standards of time and frequency at the outset of the 21st century. Science, 306, 1318-1324(2004).
[3] F.-L. Hong. Optical frequency standards for time and length applications. Meas. Sci. Technol., 28, 012002(2017).
[4] A. Lewis. Measurement of length, surface form and thermal-expansion coefficient of length bars up to 1.5 m using multiple-wavelength phase-stepping interferometry. Meas. Sci. Technol., 5, 694-703(1994).
[5] W. Fu, F. Yan, K. Chen. Scene distance measurement method based on light field imaging. Appl. Opt., 54, 6237-6243(2015).
[6] C. J. Walsh. Measurements of absolute distances to 25 m by multiwavelength CO2-laser interferometry. Appl. Opt., 26, 1680-1687(1987).
[7] H. J. Yang, J. Deibel, S. Nyberg. High-precision absolute distance and vibration measurement with frequency scanned interferometry. Appl. Opt., 44, 3937-3944(2005).
[8] P. Balling, P. Kren, P. Masika. Femtosecond frequency comb based distance measurement in air. Opt. Express, 17, 9300-9313(2009).
[9] K. Hei, K. Anandarajah, E. P. Martin. Absolute distance measurement with a gain-switched dual optical frequency comb. Opt. Express, 29, 8108-8116(2021).
[10] A. Lesundak, D. Voigt, O. Cip. High-accuracy long distance measurements with a mode-filtered frequency comb. Opt. Express, 25, 32570-32580(2017).
[11] N. Schuhler, Y. Salvade, S. Leveque. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett., 31, 3101-3103(2006).
[12] S. A. van den Berg, S. van Eldik, N. Bhattacharya. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement. Sci. Rep., 5, 14661(2015).
[13] B. Xue, Z. Wang, H. Zhang. Absolute distance measurement by self-heterodyne EO comb interferometry. IEEE Photon. Technol. Lett., 30, 861-864(2018).
[14] W. Yu, P. Pfeiffer, A. Morsali. Comb-calibrated frequency sweeping interferometry for absolute distance and vibration measurement. Opt. Lett., 44, 5069-5072(2019).
[15] H. Zhang, H. Wei, X. Wu. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express, 22, 6597-6604(2014).
[16] S. T. Cundiff, J. Ye. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys., 75, 325-342(2003).
[17] T. Udem, R. Holzwarth, T. Haensch. Femtosecond optical frequency combs. Eur. Phys. J. Spec. Top., 172, 69-79(2009).
[18] Y.-S. Jang, H. Liu, J. Yang. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb. Phys. Rev. Lett., 126, 023903(2021).
[19] Y.-S. Jang, J. Park, J. Jin. Comb-mode resolved spectral domain interferometer enabled by a broadband electro-optic frequency comb. Photon. Res., 11, 72-80(2023).
[20] J. Riemensberger, A. Lukashchuk, M. Karpov. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).
[21] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).
[22] J. Wang, Z. Lu, W. Wang. Long-distance ranging with high precision using a soliton microcomb. Photon. Res., 8, 1964-1972(2020).
[23] G. Wu, S. Zhou, Y. Yang. Dual-comb ranging and its applications. Chin. J. Lasers, 48, 1504002(2021).
[24] G. Wu, Q. Zhou, L. Shen. Experimental optimization of the repetition rate difference in dual-comb ranging system. Appl. Phys. Express, 7, 106602(2014).
[25] Z. Zhu, G. Wu. Dual-comb ranging. Engineering, 4, 772-778(2018).
[26] I. Coddington, W. C. Swann, L. Nenadovic. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).
[27] J. Zheng, Y. Wang, X. Wang. Optical ranging system based on multiple pulse train interference using soliton microcomb. Appl. Phys. Lett., 118, 261106(2021).
[28] K. Falaggis, D. P. Towers, C. E. Towers. Multiwavelength interferometry: extended range metrology. Opt. Lett., 34, 950-952(2009).
[29] S. A. van den Berg, S. T. Persijn, G. J. P. Kok. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett., 108, 183901(2012).
[30] G. Wu, M. Takahashi, H. Inaba. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement. Opt. Lett., 38, 2140-2143(2013).
[31] J. Xiong, L. Zhong, S. Liu. Improved phase retrieval method of dual-wavelength interferometry based on a shorter synthetic-wavelength. Opt. Express, 25, 7181-7191(2017).
[32] S. Bak, G. H. Kim, H. Jang. Optical Vernier sampling using a dual-comb-swept laser to solve distance aliasing. Photon. Res., 9, 657-667(2021).
[33] M. Cui, M. G. Zeitouny, N. Bhattacharya. Long distance measurement with femtosecond pulses using a dispersive interferometer. Opt. Express, 19, 6557-6570(2011).
[34] G. Tang, X. Qu, F. Zhang. Absolute distance measurement based on spectral interferometry using femtosecond optical frequency comb. Opt. Laser Eng., 120, 71-78(2019).
[35] K. E. Webb, J. K. Jang, J. Anthony. Measurement of microresonator frequency comb coherence by spectral interferometry. Opt. Lett., 41, 277-280(2016).
[36] J. D. Wang, Z. Lu, W. Wang. Long-distance ranging with high precision using a soliton microcomb. Photon. Res., 8, 1964-1972(2020).
[37] J. Wang, X. Qu, F. Zhang. Review of dispersive interferometry ranging with optical frequency comb and the instrumentation prospect. Proc. SPIE, 11437, 114370A(2020).
[38] J.-W. Chen, J.-D. Wang, X.-H. Qu. Analysis of main parameters of spectral interferometry ranging using optical frequency comb and an improved data processing method. Acta Phys. Sin., 68, 190602(2019).
[39] M. Godbout, J.-D. Deschenes, J. Genest. Spectrally resolved laser ranging with frequency combs. Opt. Express, 18, 15981-15989(2010).
[40] K.-N. Joo, Y. Kim, S.-W. Kim. Distance measurements by combined method based on a femtosecond pulse laser. Opt. Express, 16, 19799-19806(2008).
[41] H. Wu, F. Zhang, T. Liu. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser. Opt. Express, 23, 31582-31593(2015).
[42] Q. Niu, J. Zheng, X. Cheng. Arbitrary distance measurement without dead zone by chirped pulse spectrally interferometry using a femtosecond optical frequency comb. Opt. Express, 30, 35029-35040(2022).
[43] H. Shu, L. Chang, Y. Tao. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。
Set citation alerts for the article
Please enter your email address
CancelConfirm