• Journal of Applied Optics
  • Vol. 45, Issue 4, 723 (2024)
Haiyong CHEN1, Dengbin LIU1, and Xingwei YAN2,3,*
Author Affiliations
  • 1School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300401, China
  • 2College of Electronic Science, National University of Defense Technology, Changsha 410073, China
  • 3Tianjin Institute of Advanced Technology, Tianjin 300459, China
  • show less
    DOI: 10.5768/JAO202445.0402001 Cite this Article
    Haiyong CHEN, Dengbin LIU, Xingwei YAN. Infrared image UAV target detection algorithm based on IDOU-YOLO[J]. Journal of Applied Optics, 2024, 45(4): 723 Copy Citation Text show less
    References

    [1] Rongqi JIANG, Ruokai BAI, Yueping PENG. Overview of low slow small unmanned aerial vehicle target detection technology. Winged Missiles Journal, 100-105(2020).

    [2] W WANG, P WANG, Z NIU. A real-time detection algorithm for unmanned aerial vehicle target in infrared search system, 1-5(2018).

    [3] D PANG, T SHAN, P MA et al. A novel spatiotemporal saliency method for low-altitude slow small infrared target detection. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2021).

    [4] H FANG, L DING, L WANG et al. Infrared small UAV target detection based on depthwise separable residual dense network and multiscale feature fusion. IEEE Transactions on Instrumentation and Measurement, 71, 1-20(2022).

    [5] Mingjiang XIA. Research on target detection method of infrared UAV in complex dynamic scene(2022).

    [6] Hongxuan OU. Research on infrared small target monitoring method based on deep learning(2022).

    [7] Z XU, J SU, K HUANG. A-RetinaNet: a novel RetinaNet with an asymmetric attention fusion mechanism for dim and small drone detection in infrared images. Mathematical Biosciences and Engineering, 20, 6630-6651(2023).

    [8] M MISBAH, M U KHAN, Z YANG et al. Tf-net: deep learning empowered tiny feature network for night-time uav detection, 3-18(2023).

    [9] C Y WANG, A BOCHKOVSKIY, H Y M LIAO. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023).

    [10] S LIU, L QI, H QIN et al. Path aggregation network for instance segmentation, 8759-8768(2018).

    [11] T Y LIN, P DOLLÁR, R GIRSHICK et al. Feature pyramid networks for object detection, 2117-2125(2017).

    [12] X XU, Y JIANG, W CHEN et al. DAMO-YOLO: a report on real-time object detection design. https://arxiv.org/abs/2211.15444

    [13] Z ZHENG, P WANG, W LIU et al. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).

    [14] Z GEVORGYAN. SIoU loss: more powerful learning for bounding box regression. https://arxiv.org/abs/2205.12740

    [15] N JIANG, K WANG, X PENG et al. Anti-UAV: a large multi-modal benchmark for UAV tracking. https://arxiv.org/abs/2101.08466

    [16] M TAN, R PANG, Q V LE. Efficientdet: scalable and efficient object detection, 10781-10790(2020).

    [17] S REN, K HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 39, 1137-1149(2017).

    [18] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2980-2988(2017).

    [19] K DUAN, S BAI, L XIE et al. Centernet: keypoint triplets for object detection, 6569-6578(2019).

    [20] Z TIAN, C SHEN, H CHEN et al. Fcos: fully convolutional one-stage object detection, 9627-9636(2019).

    [21] Z GE, S LIU, F WANG et al. Yolox: exceeding yolo series in 2021. https:// arxiv.org/abs/2107.084-30

    Haiyong CHEN, Dengbin LIU, Xingwei YAN. Infrared image UAV target detection algorithm based on IDOU-YOLO[J]. Journal of Applied Optics, 2024, 45(4): 723
    Download Citation