• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 1, 12005 (2023)
1, 1,2,*, 1, 1..., 1, 1 and 1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Precision Measuring Technology & Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, People’s Republic of China
  • 2Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, Dublin 4, Ireland
  • show less
    DOI: 10.1088/2631-7990/acb134 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 12005 Copy Citation Text show less
    References

    [1] Gale M T and Knop K 1983 The fabrication of fine lens arrays by laser beam writing Proc. SPIE 398 347–53

    [2] Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature 412 697–8

    [3] Radke A, Gissibl T, Klotzbücher T, Braun P V and Giessen H 2011 Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating Adv. Mater. 23 3018–21

    [4] WangWK,SunZB,ZhengML,DongXZ,ZhaoZSand Duan X M 2011 Magnetic nickel-phosphorus/polymer composite and remotely driven three-dimensional micromachine fabricated by nanoplating and two-photon polymerization J. Phys. Chem. C 115 11275–81

    [5] Wong S, Deubel M, Pérez-Willard F, John S, Ozin G A, Wegener M and von Freymann G 2006 Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses Adv. Mater. 18 265–9

    [6] LiuXQ,ChenQD,GuanKM,MaZC,Yu YH,LiQK, Tian Z N and Sun H B 2017 Dry-etching-assisted femtosecond laser machining Laser Photonics Rev. 11 1600115

    [7] Wang S, Zhou Z, Li B, Wang C and Liu Q 2021 Progresses on new generation laser direct writing technique Mater. Today Nano 16 100142

    [8] Bérubé J P, Lapointe J, Dupont A, Bernier M and Vallée R 2019 Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire Opt. Lett. 44 37–40

    [9] Yao ZL,JiangL,LiXW, WangAD,WangZ,LiMand Lu Y F 2018 Non-diffraction-length, tunable, Bessel-like beams generation by spatially shaping a femtosecond laser beam for high-aspect-ratio micro-hole drilling Opt. Express 26 21960–8

    [10] Her T H, Finlay R J, Wu C D, Deliwala S and Mazur E 1998 Microstructuring of silicon with femtosecond laser pulses Appl. Phys. Lett. 73 1673–5

    [11] Fan PX,BaiBF, ZhongML,ZhangHJ,LongJY, HanJP, Wang W Q and Jin G F 2017 General strategy toward dual-scale-controlled metallic micro.nano hybrid structures with ultralow reflectance ACS Nano 11 7401–8

    [12] Mazumder P, Jiang Y D, Baker D, Carrilero A, Tulli D, Infante D, Hunt A T and Pruneri V 2014 Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures Nano Lett. 14 4677–81

    [13] Zhang D S, Liu R J and Li Z G 2022 Irregular LIPSS produced on metals by single linearly polarized femtosecond laser Int. J. Extreme Manuf. 4 015102

    [14] Wang L, Wang Z H, Yu Y H and Sun H B 2018 Laser interference fabrication of large-area functional periodic structure surface Front. Mech. Eng. 13 493–503

    [15] Lam B and Guo C L 2021 Compact vectorial optical field generator using a single phase-only spatial light modulator Opt. Lett. 46 3901–4

    [16] Yin F, Meng Y Z, Yang Q, Kai L, Liu Y, Hou X, Lu Y and Chen F 2022 High precision reconstruction for compressed femtosecond dynamics images based on the TVAL3 algorithm Opt. Mater. Express 12 4435–43

    [17] Maruo S, Nakamura O and Kawata S 1997 Three-dimensional microfabrication with two-photon-absorbed photopolymerization Opt. Lett. 22 132–4

    [18] Mohr-Weidenfeller L, H.cker A V, Reinhardt C and Manske E 2021 Two-photon direct laser writing beyond the diffraction limit using the nanopositioning and nanomeasuring machine Nanomanuf. Metrol. 4 149–55

    [19] Shimizu Y 2021 Laser interference lithography for fabrication of planar scale gratings for optical metrology Nanomanuf. Metrol. 4 3–27

    [20] Nakajima A, Omiya M and Yan J W 2022 Generation of micro/nano hybrid surface structures on copper by femtosecond pulsed laser irradiation Nanomanuf. Metrol. 5 274–82

    [21] Pfleging W 2021 Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing Int. J. Extreme Manuf. 3 012002

    [22] Zhang D S, Ranjan B, Tanaka T and Sugioka K 2020 Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring Int. J. Extreme Manuf. 2 015001

    [23] Shu T, Liu F, Chen S, Liu X T, Zhang C and Cheng G J 2022 Origins of ultrafast pulse laser-induced nano straight lines with potential applications in detecting subsurface defects in silicon carbide wafers Nanomanuf. Metrol. 5 167–78

    [24] Zhang Y X et al 2022 Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation Nano Lett. 22 2923–33

    [25] Xin C et al 2021 Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment ACS Nano 15 18048–59

    [26] Chalker P R 2016 Photochemical atomic layer deposition and etching Surf. Coat. Technol. 291 258–63

    [27] Bonaccorso F, Lombardo A, Hasan T, Sun Z P, Colombo L and Ferrari A C 2012 Production and processing of graphene and 2D crystals Mater. Today 15 564–89

    [28] He T, Wang Z, Zhong F, Fang H H, Wang P and Hu W D 2019 Etching techniques in 2D materials Adv. Mater. Technol. 4 1900064

    [29] Gao J, Luo X C, Fang F Z and Sun J N 2022 Fundamentals of atomic and close-to-atomic scale manufacturing: a review Int. J. Extreme Manuf. 4 012001

    [30] Fang F Z 2020 Atomic and close-to-atomic scale manufacturing: perspectives and measures Int. J. Extreme Manuf. 2 030201

    [31] Fang F Z 2022 The three paradigms of manufacturing advancement J. Manuf. Syst. 63 504–5

    [32] Han W, Mathew P T, Kolagatla S, Rodriguez B J and Fang F Z 2022 Toward single-atomic-layer lithography on highly oriented pyrolytic graphite surfaces using AFM-based electrochemical etching Nanomanuf. Metrol. 5 32–38

    [33] Rahman F and Runyon J C 2021 Atomic layer processes for material growth and etching—a review IEEE Trans. Semicond. Manuf. 34 500–12

    [34] Shugaev M V et al 2016 Fundamentals of ultrafast laser–material interaction MRS Bull. 41 960–8

    [35] Christensen B H, Vestentoft K and Balling P 2007 Short-pulse ablation rates and the two-temperature model Appl. Surf. Sci. 253 6347–52

    [36] Norman G E, Starikov S V and Stegailov V V 2012 Atomistic simulation of laser ablation of gold: effect of pressure relaxation J. Exp. Theor. Phys. 114 792–800

    [37] Stegailov V, Starikov S and Norman G 2012 Atomistic simulation of laser ablation of gold: the effect of electronic pressure AIP Conf. Proc. 1426 905–8

    [38] Otobe T, Yamagiwa M, Iwata J I, Yabana K, Nakatsukasa T and Bertsch G F 2008 First-principles electron dynamics simulation for optical breakdown of dielectrics under an intense laser field Phys. Rev. B 77 165104

    [39] Yuan Y P, Jiang L, Li X, Wang C, Xiao H, Lu Y F and Tsai H 2012 Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics J. Phys. D: Appl. Phys. 45 175301

    [40] Stoian R, Ashkenasi D, Rosenfeld A and Campbell E E B 2000 Coulomb explosion in ultrashort pulsed laser ablation of Al2O3 Phys. Rev. B 62 13167–73

    [41] Dai Y T, Xu G and Tong X L 2012 Deep UV laser etching of GaN epilayers grown on sapphire substrate J. Mater. Process. Technol. 212 492–6

    [42] Akane T, Sugioka K, Nomura S, Hammura K, Aoki N, Toyoda K, Aoyagi Y and Midorikawa K 2000 F2 laser etching of GaN Appl. Surf. Sci. 168 335–9

    [43] Nakashima S, Sugioka K and Midorikawa K 2010 Improvement of resolution in nano-fabrication of GaN by wet-chemical-assisted femtosecond laser ablation J. Laser Micro Nanoeng. 5 21–24

    [44] Zhao X and Shin Y C 2013 Coulomb explosion and early plasma generation during femtosecond laser ablation of silicon at high laser fluence J. Phys. D: Appl. Phys. 46 335501

    [45] LiSC,LiSY, ZhangFJ,TianD,LiH,LiuDL,JiangYF, Chen A M and Jin M X 2015 Possible evidence of Coulomb explosion in the femtosecond laser ablation of metal at low laser fluence Appl. Surf. Sci. 355 681–5

    [46] Stoian R, Boyle M, Thoss A, Rosenfeld A, Korn G, Hertel I V and Campbell E E B 2002 Laser ablation of dielectrics with temporally shaped femtosecond pulses Appl. Phys. Lett. 80 353–5

    [47] Costache F and Reif J 2004 Femtosecond laser induced Coulomb explosion from calcium fluoride Thin Solid Films 453–454 334–9

    [48] Roeterdink W G, Juurlink L B F, Vaughan O P H, Diez J D, Bonn M and Kleyn A W 2003 Coulomb explosion in femtosecond laser ablation of Si(111) Appl. Phys. Lett. 82 4190–2

    [49] Dachraoui H, Husinsky W and Betz G 2006 Ultra-short laser ablation of metals and semiconductors: evidence of ultra-fast Coulomb explosion Appl. Phys. A 83 333–6

    [50] Kaplan A, Lenner M and Palmer R E 2007 Emission of ions and charged clusters due to impulsive Coulomb explosion in ultrafast laser ablation of graphite Phys. Rev. B 76 073401

    [51] LinXH,ChenHQ,JiangSYandZhangCB2012A coulomb explosion theoretical model of femtosecond laser ablation materials Sci. China Technol. Sci. 55 694–701

    [52] Tao S and Wu B X 2014 The effect of emitted electrons during femtosecond laser–metal interactions: a physical explanation for coulomb explosion in metals Appl. Surf. Sci. 298 90–94

    [53] Kudryashov S I and Emel’yanov V I 2001 Electron gas compression and Coulomb explosion in the surface layer of a conductor heated by femtosecond laser pulse J. Exp. Theor. Phys. Lett. 73 666–70

    [54] Bulgakova N M, Stoian R, Rosenfeld A, Hertel I V, Marine W and Campbell E E B 2005 A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion Appl. Phys. A 81 345–56

    [55] Kanasaki J, Iwata K and Tanimura K 1999 Translational energy distribution of Si atoms desorbed by laser-induced electronic bond breaking of adatoms on Si(111)-(7×7) Phys. Rev. Lett. 82 644–7

    [56] Kanasaki J, Ishida T, Ishikawa K and Tanimura K 1998 Laser-induced electronic bond breaking and desorption of adatoms on Si(111)-(7×7) Phys. Rev. Lett. 80 4080–3

    [57] Ishikawa K, Kanasaki J, Nakai Y and Itoh N 1996 Laser-induced bond breaking of the adatoms of the Si (111)-7×7 surface Surf. Sci. 349 L153–8

    [58] Xu J, Overbury S H and Wendelken J F 1996 Selective laser removal of the dimer layer from Si(100) surfaces revealed by scanning tunneling microscopy Phys. Rev. B 53 R4245(R)

    [59] Kanasaki J, Nakamura M, Ishikawa K and Tanimura K 2002 Primary processes of laser-induced selective dimer-layer removal on Si(001)-(2×1) Phys. Rev. Lett. 89 257601

    [60] Itoh N, Kanasaki J and Xu J 1999 Laser-induced desorption from STM-selected semicondutor sites Prog. Surf. Sci. 61 1–19

    [61] Itoh N and Stoneham A M 2001 Materials modification by electronic excitation Radiat. Eff. Defects Solids 155 277–90

    [62] Chen X H, Polanyi J C and Rogers D 1997 Photoetching of Si(111)-(7×7) studied by STM Surf. Sci. 376 77–86

    [63] Carbone F, Baum P, Rudolf P and Zewail A H 2008 Structural preablation dynamics of graphite observed by ultrafast electron crystallography Phys. Rev. Lett. 100 035501

    [64] Raman R K, Murooka Y, Ruan C Y, Yang T, Berber S and Tománek D 2008 Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography Phys. Rev. Lett. 101 077401

    [65] Dhar S et al 2011 A new route to graphene layers by selective laser ablation AIP Adv. 1 022109

    [66] Reininghaus M, Wortmann D, Finger J, Faley O, Poprawe R and Stampfer C 2012 Laser induced non-thermal deposition of ultrathin graphite Appl. Phys. Lett. 100 151606

    [67] Tran-Khac B C, White R M, DelRio F W and Chung K H 2019 Layer-by-layer thinning of MoS2 via laser irradiation Nanotechnology 30 275302

    [68] Riedel D, Mayne A J and Dujardin G 2005 Atomic-scale analysis of hydrogen bond breaking from Si(100): h induced by optical electronic excitation Phys. Rev. B 72 233304

    [69] Yonezawa T, Daimon H, Nakatsuji K, Sakamoto K, Suga S, Namba H and Ohta T 1994 Photon-stimulated desorption mechanism of Cl+ ions from Cl/Si(111) surface Jpn. J. Appl. Phys. 33 2248–51

    [70] Durbin T D, Simpson W C, Chakarian V, Shuh D K, Varekamp P R, Lo C W and Yarmoff J A 1994 Stimulated desorption of Cl+ and the chemisorption of Cl2 on Si(111)-7×7 and Si(100)-2×1 Surf. Sci. 316 257–66

    [71] Komori F, Shudo K, Hattori K, Iimori T and Murata Y 1996 STM study of laser-induced desorption from Si(111) surfaces with adsorbates Surf. Sci. 363 268–73

    [72] Amasuga H, Nakamura M, Mera Y and Maeda K 2002 The atomic processes of ultraviolet laser-induced etching of chlorinated silicon (1 1 1) surface Appl. Surf. Sci. 197–198 577–80

    [73] Iimori T, Hattori K, Shudo K, Iwaki T, Ueta M and Komori F 1998 Laser-induced mono-atomic-layer etching on Cl-adsorbed Si(111) surfaces Appl. Surf. Sci. 130–132 90–95

    [74] Maki P A and Ehrlich D J 1989 Laser bilayer etching of GaAs surfaces Appl. Phys. Lett. 55 91–93

    [75] Ishii M, Meguro T, Gamo K, Sugano T and Aoyagi Y 1993 Digital etching using KrF excimer laser: approach to atomic-order-controlled etching by photo induced reaction Jpn. J. Appl. Phys. 32 6178–81

    [76] Meguro T, Ishii M, Sugano T, Gamo K and Aoyagi Y 1994 Control of the etching reaction of digital etching using tunable UV laser irradation Appl. Surf. Sci. 82–83 193–9

    [77] Han B Y and Weaver J H 1998 Laser interaction with Br-GaAs(110): etching and atomic desorption Phys. Rev. B 58 10981–9

    [78] Han B Y, Cha C Y and Weaver J H 1998 Layer-by-layer etching of GaAs (110) with halogenation and pulsed-laser irradiation J. Vac. Sci. Technol. A 16 490–3

    [79] Han B Y and Weaver J H 1998 Spontaneous and laser-enhanced halogen etching of GaAs(110) J. Phys.: Condens. Matter 10 7723–42

    [80] Wang P Z, Wang J S and Fang F Z 2021 Study on mechanisms of photon-induced material removal on silicon at atomic and close-to-atomic scale Nanomanuf. Metrol. 4 216–25

    [81] Weston L, Downes J E, Baldwin C G, Granados E, Tawfik S A, Cui X Y, Stampfl C and Mildren R P 2019 Photochemical etching of carbonyl groups from a carbon matrix: the (001) diamond surface Phys. Rev. Lett. 122 016802

    [82] Nantel M, Yashkir Y, Lee S K, Mugford C and Hockley B S 2001 Laser micromachining of semiconductors for photonics applications Proc. SPIE 4594 156–67

    [83] Topcu T and Robicheaux F 2012 An assessment of tunneling-multiphoton dichotomy in atomic photo-ionization: Keldysh parameter versus scaled frequency Proc. 43rd Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics (Orange County, CA: American Physical Society)

    [84] Wang C, Jiang L, Wang F, Li X, Yuan Y P, Qu L T and Lu Y F 2012 Transient localized electron dynamics simulation during femtosecond laser tunnel ionization of diamond Phys. Lett. A 376 3327–31

    [85] Otobe T 2010 First-principles calculations for multiphoton absorption in α-quartz under intense short laser irradiation J. Phys.: Condens. Matter 22 384204

    [86] Pan CJ,JiangL,WangQS,SunJY, WangGYandLuYF 2018 Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique Appl. Phys. Lett. 112 191101

    [87] Jiang L and Tsai H L 2005 Repeatable nanostructures in dielectrics by femtosecond laser pulse trains Appl. Phys. Lett. 87 151104

    [88] Lin Z B, Leveugle E, Bringa E M and Zhigilei L V 2010 Molecular dynamics simulation of laser melting of nanocrystalline Au J. Phys. Chem. C 114 5686–99

    [89] Fox M 2010 Optical Properties of Solids 2nd edn (Oxford: Oxford University Press)

    [90] Dickinson J T, Langford S C, Shin J J and Doering D L 1994 Positive ion emission from excimer laser excited MgO surfaces Phys. Rev. Lett. 73 2630–3

    [91] Han B Y, Nakayama K and Weaver J H 1999 Electron-and photon-stimulated modification of GaAs(110), Si(100), and Si(111) Phys. Rev. B 60 13846–53

    [92] Bandis C, Langford S C, Dickinson J T, Ermer D R and Itoh N 2000 Laser induced electron and sodium ion emission from single crystal NaNO3 at 1064 nm J. Appl. Phys. 87 1522–8

    [93] Yang F H, Hsiao C J, Yang Y J, Lin J H and Wang L 2002 Fabrication of blue GaN light-emitting diodes by laser etching Jpn. J. Appl. Phys. 41 L468–70

    [94] Akane T, Sugioka K, Ogino H, Takai H and Midorikawa K 1999 KrF excimer laser induced ablation–planarization of GaN surface Appl. Surf. Sci. 148 133–6

    [95] Zhang J, Sugioka K, Wada S, Tashiro H, Toyoda K and Midorikawa K 1998 Precise microfabrication of wide band gap semiconductors (SiC and GaN) by VUV–UV multiwavelength laser ablation Appl. Surf. Sci. 127–129 793–9

    [96] Akane T, Sugioka K, Hammura K, Aoyagi Y and Midorikawa K 2001 GaN ablation etching by simultaneous irradiation with F2 laser and KrF excimer laser J. Vac. Sci. Technol. B 19 1388–99

    [97] Obata K, Sugioka K, Midorikawa K, Inamura T and Takai H 2006 Deep etching of epitaxial gallium nitride film by multiwavelength excitation process using F2 and KrF excimer lasers Appl. Phys. A 82 479–83

    [98] Faenov A Y et al 2009 Low-threshold ablation of dielectrics irradiated by picosecond soft x-ray laser pulses Appl. Phys. Lett. 94 231107

    [99] Ritucci A et al 2006 Damage and ablation of large bandgap dielectrics induced by a 46.9 nm laser beam Opt. Lett. 31 68–70

    [100] Inogamov N A et al 2011 Two-temperature warm dense matter produced by ultrashort extreme vacuum ultraviolet-free electron laser (EUV-FEL) pulse Contrib. Plasma Phys. 51 419–26

    [101] Makimura T, Miyamoto H, Uchida S, Fujimori T, Niino H and Murakami K 2006 Nano-ablation of inorganic materials using laser plasma soft x-rays at around 10 nm Jpn. J. Appl. Phys. 45 5545–7

    [102] Stojanovic N et al 2006 Ablation of solids using a femtosecond extreme ultraviolet free electron laser Appl. Phys. Lett. 89 241909

    [103] Tanaka N, Masuda M, Deguchi R, Murakami M, Sunahara A, Fujioka S, Yogo A and Nishimura H 2015 Characterization of material ablation driven by laser generated intense extreme ultraviolet light Appl. Phys. Lett. 107 114101

    [104] Norman G et al 2012 Nanomodification of gold surface by picosecond soft x-ray laser J. Appl. Phys. 112 013104

    [105] Juha L et al 2005 Ablation of organic polymers by 46.9-nm-laser radiation Appl. Phys. Lett. 86 034109

    [106] Juha L et al 2005 XUV-laser induced ablation of PMMA with nano-, pico-, and femtosecond pulses J. Electron Spectrosc. Relat. Phenom. 144–147 929–32

    [107] Ozono K, Obara M, Usui A and Sunakawa H 2001 High-speed ablation etching of GaN semiconductor using femtosecond laser Opt. Commun. 189 103–6

    [108] Eliseev P G, Juodkazis S, Sugahara T, Sun H B, Matsuo S, Sakai S and Misawa H 2000 GaN surface ablation by femtosecond pulses: atomic force microscopy studies and accumulation effects Proc. SPIE 4065 546–56

    [109] Wang C, Jiang L, Wang F, Li X, Yuan Y P, Xiao H, Tsai H L and Lu Y F 2012 First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation J. Phys.: Condens. Matter 24 275801

    [110] Spyridaki M, Koudoumas E, Tzanetakis P, Fotakis C, Stoian R, Rosenfeld A and Hertel I V 2003 Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon Appl. Phys. Lett. 83 1474–6

    [111] .cˇiuka M, Grinys T, Dmukauskas M, Plerpait. V and Melninkaitis A 2013 Femtosecond laser etching of GaN and InGaN thin films grown by metal organic chemical vapor deposition Jpn. J. Appl. Phys. 52 08JK08

    [112] Wu B X and Shin Y C 2009 A simplified predictive model for high-fluence ultra-short pulsed laser ablation of semiconductors and dielectrics Appl. Surf. Sci. 255 4996–5002

    [113] Jiang L and Tsai H L 2005 Improved two-temperature model and its application in ultrashort laser heating of metal films J. Heat Transfer 127 1167–73

    [114] Duffy D M and Rutherford A M 2007 Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations J. Phys.: Condens. Matter 19 016207

    [115] Chen J K, Tzou D Y and Beraun J E 2006 A semiclassical two-temperature model for ultrafast laser heating Int. J. Heat Mass Transfer 49 307–16

    [116] Wu C P, Christensen M S, Savolainen J M, Balling P and Zhigilei L V 2015 Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target Phys. Rev. B 91 035413

    [117] Wu C P and Zhigilei L V 2014 Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations Appl. Phys. A 114 11–32

    [118] Ivanov D S et al 2015 Experimental and theoretical investigation of periodic nanostructuring of Au with ultrashort UV laser pulses near the damage threshold Phys. Rev. Appl. 4 064006

    [119] An H J, Wang J S and Fang F Z 2022 Material removal at atomic and close-to-atomic scale by high-energy photon: a case study using atomistic-continuum method Adv. Manuf. 10 59–71

    [120] Shinohara Y, Yabana K, Kawashita Y, Iwata J I, Otobe T and Bertsch G F 2010 Coherent phonon generation in time-dependent density functional theory Phys. Rev. B 82 155110

    [121] Yu D, Jiang L, Wang F, Qu L T and Lu Y F 2016 First-principles calculation of multiphoton absorption cross section of α-quartz under femtosecond laser irradiation Appl. Phys. A 122 494

    [122] Liu Z H, Wang F, Sheng X W, Wang J, Jiang L and Wei Z Y 2021 Ultrafast response of cubic silicon carbide to intense attosecond pulse light Phys. Rev. B 104 064103

    [123] Tani M, Sasaki K, Shinohara Y and Ishikawa K L 2022 Enhanced energy deposition and carrier generation in silicon induced by two-color intense femtosecond laser pulses Phys. Rev. B 106 195141

    [124] Wang P Z and Fang F Z 2022 Real-time time-dependent DFT study of laser-enhanced atomic layer etching of silicon for damage-free nanostructure fabrication J. Appl. Phys. 132 144303

    [125] Wang P Z, Castelli M and Fang F Z 2023 Mechanism of photo-assisted atomic layer etching of chlorinated Si(111) surfaces: insights from DFT/TDDFT calculations Mater. Sci. Semicond. Process. 153 107169

    [126] Miyamoto Y, Zhang H and Tomanek D 2010 Photoexfoliation of graphene from graphite: an ab initio study Phys. Rev. Lett. 104 208302

    [127] Miyamoto Y, Zhang H, Miyazaki T and Rubio A 2015 Modifying the interlayer interaction in layered materials with an intense IR laser Phys. Rev. Lett. 114 116102

    [128] Miyamoto Y 2021 Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals Sci. Rep. 11 14626

    [129] Liu W H, Luo J W, Li S S and Wang L W 2022 The seeds and homogeneous nucleation of photoinduced nonthermal melting in semiconductors due to self-amplified local dynamic instability Sci. Adv. 8 eabn4430

    [130] Zhang W, Shi Z W, Chen C, Yang X N, Yang L Y, Zeng Z M, Zhang B S and Liu Q 2018 Super-resolution GaAs nano-structures fabricated by laser direct writing Mater. Sci. Semicond. Process. 84 119–23

    [131] Kim J et al 2014 Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation Appl. Phys. Lett. 104 141105

    [132] ChenYY, Yuan DJ,YangMC,WangDLandSun XH 2017 High efficiency GaN LEDs with submicron-scale 2D periodic structures directly fabricated by laser interference ablation Opt. Laser Technol. 90 211–5

    [133] Miyaji G and Miyazaki K 2016 Fabrication of 50-nm period gratings on GaN in air through plasmonic near-field ablation induced by ultraviolet femtosecond laser pulses Opt. Express 24 4648–53

    [134] Vaschenko G et al 2006 Nanometer-scale ablation with a table-top soft x-ray laser Opt. Lett. 31 3615–7

    [135] Bravo H, Szapiro B T, Wachulak P W, Marconi M C, Chao W L, Anderson E H, Menoni C S and Rocca J J 2012 Demonstration of nanomachining with focused extreme ultraviolet laser beams IEEE J. Sel. Top. Quantum Electron. 18 443–8

    [136] Kolacek K, Straus J, Schmidt J, Frolov O, Prukner V, Shukurov A, Holy V, Sobota J and Fort T 2012 Nano-structuring of solid surface by extreme ultraviolet Ar8+ laser Laser Part. Beams 30 57–63

    [137] Kolacek K, Schmidt J, Straus J, Frolov O, Juha L and Chalupsky J 2014 Interaction of extreme ultraviolet laser radiation with solid surface: ablation, desorption, nanostructuring Proc. SPIE 9255 92553U

    [138] Frolov A, Kolacek K, Schmidt J, Straus J and Choukourov A 2019 Nanostructuring of PMMA, GaAs, SiC and Si samples by focused XUV laser beam Proc. SPIE 11035 110350K

    [139] Lee S G, Mishkat-Ul-Masabih S, Leonard J T, Feezell D F, Cohen D A, Speck J S, Nakamura S and DenBaars S P 2017 Smooth and selective photo-electrochemical etching of heavily doped GaN:Si using a mode-locked 355 nm microchip laser Appl. Phys. Express 10 011001

    [140] Nakashima S, Sugioka K, Ito T, Takai H and Midorikawa K 2011 Fabrication of high-aspect-ratio nanohole arrays on GaN surface by using wet-chemical-assisted femtosecond laser ablation J. Laser Micro Nanoeng. 6 15–19

    [141] Nakashima S, Sugioka K and Midorikawa K 2009 Fabrication of micro-and nano-craters on the surface of GaN substrates by using wet-chemicals assisted femtosecond laser ablation J. Laser Micro Nanoeng. 4 75–78

    [142] Nakashima S, Sugioka K and Midorikawa K 2009 Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation Appl. Surf. Sci. 255 9770–4

    [143] Zhang W, Shi Z W, Yang X N, Chen C, Yang L Y, Zeng Z M, Zhang B S and Liu Q 2018 Laser induced nano-patterning with atomic-scale thickness on an InAs/GaAs surface Semicond. Sci. Technol. 33 115021

    [144] Deng C W, Shi Z W, Yang L Y, Zhang W, Chen C, Miao L L, YangX N, Wang CH, Chen L S and Peng C S 2018 In situ lift-off of InAs quantum dots by pulsed laser irradiation Appl. Phys. Lett. 113 083111

    [145] Qian M, Zhou Y S, Gao Y, Park J B, Feng T, Huang S M, Sun Z, Jiang L and Lu Y F 2011 Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite Appl. Phys. Lett. 98 173108

    [146] Li D W, Zhou Y S, Huang X, Jiang L, Silvain J F and Lu Y F 2015 In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene Nanoscale 7 3651–9

    [147] Qin F et al 2021 π-phase modulated monolayer supercritical lens Nat. Commun. 12 32

    [148] Wang Y W et al 2020 Atomically thin noble metal dichalcogenides for phase-regulated meta-optics Nano Lett. 20 7811–8

    [149] Han G H et al 2011 Laser thinning for monolayer graphene formation: heat sink and interference effect ACS Nano 5 263–8

    [150] HuLL,ShanXY, Wu YL,ZhaoJMandLuXH2017 Laser thinning and patterning of MoS2 with layer-by-layer precision Sci. Rep. 7 15538

    [151] Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S J and Steele G A 2012 Laser-thinning of MoS2: on demand generation of a single-layer semiconductor Nano Lett. 12 3187–92

    [152] AnSJ,KimYH,LeeC,ParkDYandJeongMS2018 Exfoliation of transition metal dichalcogenides by a high-power femtosecond laser Sci. Rep. 8 12957

    [153] Mortazavi S Z, Parvin P and Reyhani A 2012 Fabrication of graphene based on Q-switched Nd: YAGlaser ablation of graphite target in liquid nitrogen Laser Phys. Lett. 9 547–52

    [154] Xu Y M, Yan L H, Li X Y and Xu H H 2019 Fabrication of transition metal dichalcogenides quantum dots based on femtosecond laser ablation Sci. Rep. 9 2931

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 12005
    Download Citation