• Journal of Innovative Optical Health Sciences
  • Vol. 16, Issue 3, 2230013 (2023)
Song Zhao1, Ting Zhang2, and Weidong Tong1,*
Author Affiliations
  • 1Department of General Surgery, Gastric and Colorectal Surgery Division, Army Medical Center (Daping Hospital), Army Medical University Chongqing, P. R. China
  • 2Department of General Surgery, The 983th Hospital of Joint Logistic Support Force of People’s Liberation Army, Tianjin, P. R. China
  • show less
    DOI: 10.1142/S1793545822300130 Cite this Article
    Song Zhao, Ting Zhang, Weidong Tong. Application of optogenetics in the study of gastrointestinal motility: A mini review[J]. Journal of Innovative Optical Health Sciences, 2023, 16(3): 2230013 Copy Citation Text show less
    References

    [1] Interstitial cells: Regulators of smooth muscle function. Physiol. Rev., 94, 859-907(2014). https://doi.org/10.1152/physrev.00037.2013

    [2] Spontaneous electrical activity and rhythmicity in gastrointestinal smooth muscles. Adv. Exp. Med. Biol., 1124, 3-46(2019). https://doi.org/10.1007/978-981-13-5895-1_1

    [3] Unexpected roles for the second brain: Enteric nervous system as master regulator of bowel function. Annu. Rev. Physiol., 81, 235-259(2019). https://doi.org/10.1146/annurev-physiol-021317-121515

    [4] Emerging tools to study enteric neuromuscular function. Am. J. Physiol. Gastrointest. Liver Physiol., 312, G420-G426(2017). https://doi.org/10.1152/ajpgi.00049.2017

    [5] Cellular and molecular basis of chronic constipation: Taking the functional/idiopathic label out. World J. Gastroenterol., 19, 4099-4105(2013). https://doi.org/10.3748/wjg.v19.i26.4099

    [6] et alChronic constipation. Nat. Rev. Dis. Primers., 3, 17095(2017). https://doi.org/10.1038/nrdp.2017.95

    [7] The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol., 9, 286-294(2012). https://doi.org/10.1038/nrgastro.2012.32

    [8] Optogenetic medicine: Synthetic therapeutic solutions precision-guided by light. Cold Spring Harb Perspect Med., 9, a034371(2019). https://doi.org/10.1101/cshperspect.a034371

    [9] Optogenetic and chemogenetic techniques for neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol., 15, 21-38(2018). https://doi.org/10.1038/nrgastro.2017.151

    [10] The optogenetic catechism. Science, 326, 395-399(2009). https://doi.org/10.1126/science.1174520

    [11] et alWirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Meth., 12, 969-974(2015). https://doi.org/10.1038/nmeth.3536

    [12] et alFlexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron, 93, 509-521. e3(2017). https://doi.org/10.1016/j.neuron.2016.12.031

    [13] et alSimultaneous optical and electrical in vivo analysis of the enteric nervous system. Nat. Commun., 7, 11800(2016). https://doi.org/10.1038/ncomms11800

    [14] Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci., 28, 533-563(2005). https://doi.org/10.1146/annurev.neuro.28.051804.101610

    [15] et alChannelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA, 100, 13940-13945(2003). https://doi.org/10.1073/pnas.1936192100

    [16] Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res., 54, 85-94(2006). https://doi.org/10.1016/j.neures.2005.10.009

    [17] et alEctopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 50, 23-33(2006). https://doi.org/10.1016/j.neuron.2006. 02.026

    [18] et alFast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA, 102, 17816-17821(2005). https://doi.org/10.1073/pnas.0509030102

    [19] Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci., 8, 1263-1268(2005). https://doi.org/10.1038/nn1525

    [20] Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci., 26, 10380-10386(2006). https://doi.org/10.1523/JNEUROSCI.3863-06.2006

    [21] Regulation of Gastrointestinal smooth muscle function by interstitial cells. Physiology (Bethesda), 31, 316-326(2016). https://doi.org/10.1152/physiol. 00006.2016

    [22] et alA model to study the phenotypic changes of interstitial cells of Cajal in gastrointestinal diseases. Gastroenterology, 138, 1068-1078 e1-2(2010). https://doi.org/10.1053/j.gastro.2009. 11.007

    [23] et alSmooth muscle transcriptome browser: Offering genome-wide references and expression profiles of transcripts expressed in intestinal SMC, ICC, and PDGFRalpha(+) cells. Sci. Rep., 9, 387(2019). https://doi.org/10.1038/s41598-018-36607-6

    [24] Differential expression of genes related to purinergic signaling in smooth muscle cells, PDGFRalpha-positive cells, and interstitial cells of Cajal in the murine colon. Neurogastroenterol. Motil., 25, e609-20(2013). https://doi.org/10.1111/nmo. 12174

    [25] Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J. Neurosci., 24, 9572-9579(2004). https://doi.org/10.1523/JNEUROSCI.2854-04.2004

    [26] Applications of spatio-temporal mapping and particle analysis techniques to quantify intracellular Ca2+ signaling in situ. J. Vis. Exp., 7, 10.3791/58989(2019). https://doi.org/10.3791/58989

    [27] Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine. J. Physiol., 594, 3317-3338(2016). https://doi.org/10.1113/JP271699

    [28] et alCa(2+) signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon. Elife, 10, e64099(2021). https://doi.org/10.7554/eLife.64099

    [29] et alThe cells and conductance mediating cholinergic neurotransmission in the murine proximal stomach. J. Physiol., 596, 1549-1574(2018). https://doi.org/10.1113/JP275478

    [30] The effects of mitochondrial inhibitors on Ca(2+) signalling and electrical conductances required for pacemaking in interstitial cells of Cajal in the mouse small intestine. Cell Calcium, 72, 1-17(2018). https://doi.org/10.1016/j.ceca.2018.01.003

    [31] et alClustering of Ca(2+) transients in interstitial cells of Cajal defines slow wave duration. J. Gen. Physiol., 149, 703-725(2017). https://doi.org/10.1085/jgp.201711771

    [32] et alUse of genetically encoded calcium indicators (GECIs) Combined with advanced motion tracking techniques to examine the behavior of neurons and Glia in the enteric nervous system of the intact murine colon. Front Cell Neurosci., 9, 436(2015). https://doi.org/10.3389/fncel.2015.00436

    [33] et alPrinciples for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Meth., 9, 159-172(2011). https://doi.org/10.1038/nmeth.1808

    [34] et alDeriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature, 531, 105-109(2016). https://doi.org/10.1038/nature 16951

    [35] et alOptogenetic demonstration of functional innervation of mouse colon by neurons derived from transplanted neural cells. Gastroenterology, 152, 1407-1418(2017). https://doi.org/10.1053/j.gastro. 2017. 01.005

    [36] et alOptogenetic induction of colonic motility in mice. Gastroenterology, 155, 514-528 e6(2018). https://doi.org/10.1053/j.gastro.2018.05.029

    [37] Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol., 15, 2279-2284(2005). https://doi.org/10.1016/j.cub.2005.11.032

    [38] Effects of optogenetic activation of the enteric nervous system on gastrointestinal motility in mouse small intestine. Auton. Neurosci., 229, 102733(2020). https://doi.org/10.1016/j.autneu.2020.102733

    [39] Optogenetic analysis of neuromuscular transmission in the colon of ChAT-ChR2-YFP BAC transgenic mice. Am. J. Physiol. Gastrointest. Liver Physiol., 317, G569-G579(2019). https://doi.org/10.1152/ajpgi.00089.2019

    [40] Activity within specific enteric neurochemical subtypes is correlated with distinct patterns of gastrointestinal motility in the murine colon. Am. J. Physiol. Gastrointest. Liver Physiol., 317, G210-G221(2019). https://doi.org/10.1152/ajpgi.00252.2018

    [41] et alPropulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal. Proc. Natl. Acad. Sci. USA, 119, e2123020119(2022). https://doi.org/10.1073/pnas.2123020119

    [42] et alGastrointestinal neurons expressing HCN4 regulate retrograde peristalsis. Cell Rep., 30, 2879-2888. e3(2020). https://doi.org/10.1016/j.celrep.2020.02.024

    [43] et alSympathetic input to multiple cell types in mouse and human colon produces region-specific responses. Gastroenterology, 160, 1208-1223.e4(2021). https://doi.org/10.1053/j.gastro.2020.09.030

    [44] Physiology and pathophysiology of the interstitial cells of Cajal: From bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am. J. Physiol. Gastrointest. Liver Physiol., 282, G747-G756(2022). https://doi.org/10.1152/ajpgi.00362.2001

    [45] Intestinal resident macrophages: Multitaskers of the gut. Neurogastroenterol. Motil, 32, e13843(2020). https://doi.org/10.1111/nmo.13843

    [46] et alTRPV4 channel signaling in macrophages promotes gastrointestinal motility via direct effects on smooth muscle cells. Immunity, 49, 107-119 e4(2018). https://doi.org/10.1016/j.immuni.2018.04.021

    [47] et alDirect optogenetic stimulation of smooth muscle cells to control gastric contractility. Theranostics, 11, 5569-5584(2021). https://doi.org/10.7150/thno.53883

    [48] et alSelective optogenetic control of Gq signaling using human neuropsin. Nat. Commun., 13, 1765(2022). https://doi.org/10.1038/s41467-022-29265-w

    [49] Optogenetic manipulation of ENS - The brain in the gut. Life Sci., 192, 18-25(2018). https://doi.org/10.1016/j.lfs.2017.11.010

    [50] et alMultimodal fast optical interrogation of neural circuitry. Nature, 446, 633-639(2007). https://doi.org/10.1038/nature05744

    Song Zhao, Ting Zhang, Weidong Tong. Application of optogenetics in the study of gastrointestinal motility: A mini review[J]. Journal of Innovative Optical Health Sciences, 2023, 16(3): 2230013
    Download Citation