[1] Lowery A, Armstrong J. Orthogonal-frequency-division Multiplexing for Dispersion Compensation of Long-haul Optical Systems[J]. Optics Express, 14, 2079-2084(2006).
[2] Shieh W, Bao H, Tang Y. Coherent Optical OFDM: Theory and Design[J]. Optics Express, 16, 841-859(2008).
[3] Li G Y, Lü J Z, Chen B et al. Channel Estimation Method of OFDM System based on Compressed Sensing[J]. Study on Optical Communications, 52-57(2022).
[4] Idris A, Sapari N L M, Idris M S et al. Reduction of PAPR Using Block Coding Method and APSK Modulation Techniques for F-OFDM in 5G System[C], 8650304(2018).
[5] Mahmud M H, Hossain M, Khan A A et al. Performance Analysis of OFDM, W-OFDM and F-OFDM Under Rayleigh Fading Channel for 5G Wireless Communication[C], 1172-1177(2020).
[6] Wang X B, Tjhung T T, Ng C S. Reduction of Peak-to-average Power Ratio of OFDM System Using a Companding Technique[J]. IEEE Transactions on Broadcasting, 45, 303-307(1999).
[7] Wang X B, Tjhung T T, Ng C S. Reply to the Comments on "Reduction of Peak-to-average Power Ratio of OFDM System Using a Companding Technique"[J]. IEEE Transactions on Broadcasting, 45, 420-422(1999).
[8] Ochiai H, Imai H. Performance Analysis of Deliberately Clipped OFDM Signals[J]. IEEE Transactions on Communications, 50, 89-101(2002).
[9] Zhu X, Pan W, Li H et al. Simplified Approach to Optimized Iterative Clipping and Filtering for PAPR Reduction of OFDM Signals[J]. IEEE Transactions on Communications, 61, 1891-1901(2013).
[10] Xing Z, Liu K, Huang K et al. Novel PAPR Reduction Scheme based on Continuous Nonlinear Piecewise Companding Transform for OFDM Systems[J]. China Communications, 17, 177-192(2020).
[11] Davis J A, Jedwab J. Peak-to-mean Power Control in OFDM, Golay Complementary Sequences and Reed-muller Codes[C], 708788(1998).
[12] Slimane S B. Reducing the Peak-to-average Power Ratio of OFDM Signals Through Precoding[J]. IEEE Transactions on Vehicular Technology, 56, 686-695(2007).
[13] Sharan N, Ghorai S K, Kumar A. PAPR Reduction Using a Precoder and Compander Combination in A NOMA-OFDM VLC System[C], 9760659(2022).
[14] Krongold B S, Jones D L. PAR Reduction in OFDM via Active Constellation Extension[C], 1202695(2003).
[15] Kou Y J, Lu W S, Antoniou A. New Peak-to-average Power-ratio Reduction Algorithms for Multicarrier Communications[C], 1235732(2003).
[16] Sravanti T, Vasantha N. PAPR Reduction in OFDM Using Reduced Complexity PTS with Companding[C], 7972334(2017).
[17] Wang C L, Ouyang Y. A Low-complexity Selected Mapping Scheme for Peak-to-average Power Ratio Reduction in OFDM Systems[C], 1400091(2004).
[18] Baxley R J, Zhou G T. Comparing Selected Mapping and Partial Transmit Sequence for PAR Reduction[J]. IEEE Transactions on Broadcasting, 53, 797-803(2007).
[19] Alhasson B H, Matin M A. PAPR Distribution Analysis of OFDM Signals with Partial Transmit Sequence[C], 6164869(2011).
[20] Sayyari R, Pourrostam J, Ahmadi H. A Low Complexity PTS-based PAPR Reduction Method for the Downlink of OFDM-NOMA Systems[C], 9771812(2022).
[21] Arvola A, Joshi S K, Tölli A et al. PAPR Reduction in MIMO-OFDM via Power Efficient Transmit Waveform Shaping[J]. IEEE Access, 10, 47906-47920(2022).
[22] Vahdat M, Roshandeh K P, Ardakani M et al. PAPR Reduction Scheme for Deep Learning-based Communication Systems Using Autoencoders[C], 9128513(2020).
[23] Jabrane Y, Jiménez Y P G, Armada A G et al. Reduction of Power Envelope Fluctuations in OFDM Signals by Using Neural Networks[J]. IEEE Communications Letters, 14, 599-601(2010).
[24] Sohn I. A Low Complexity PAPR Reduction Scheme for OFDM Systems via Neural Networks[J]. IEEE Communications Letters, 18, 225-228(2014).
[25] Sohn I, Kim S C. Neural Network based Simplified Clipping and Filtering Technique for PAPR Reduction of OFDM Signals[J]. IEEE Communications Letters, 19, 1438-1441(2015).
[26] Kim M, Lee W, Cho D H. A Novel PAPR Reduction Scheme for OFDM System based on Deep Learning[J]. IEEE Communication Letters, 22, 510-513(2018).
[27] Liu Z, Hu X, Han K et al. Low-complexity PAPR Reduction Method for OFDM Systems based on Real-valued Neural Networks[J]. IEEE Wireless Communications Letters, 9, 1840-1844(2020).