[1] Huang X. The algorithm of exposure image fusion based on multiresolution analysis[D](2019).
[2] Feng W, Liu H D, Wu G M et al. Gradient domain adaptive tone mapping algorithm based on color correction model[J]. Laser & Optoelectronics Progress, 57, 081007(2020).
[3] Pardo A, Sapiro G. Visualization of high dynamic range images[J]. IEEE Transactions on Image Processing, 12, 639-647(2003).
[4] Mertens T, Kautz J, van Reeth F. Exposure fusion: a simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 28, 161-171(2009).
[5] Zhang W, Cham W K. Gradient-directed multiexposure composition[J]. IEEE Transactions on Image Processing, 21, 2318-2323(2012).
[6] Li S, Kang X, Hu J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 22, 2864-2875(2013).
[7] Li S T, Kang X D. Fast multi-exposure image fusion with median filter and recursive filter[J]. IEEE Transactions on Consumer Electronics, 58, 626-632(2012).
[8] Li Z G, Zheng J H, Rahardja S. Detail-enhanced exposure fusion[J]. IEEE Transactions on Image Processing, 21, 4672-4676(2012).
[9] Shen J B, Zhao Y, Yan S C et al. Exposure fusion using boosting Laplacian pyramid[J]. IEEE Transactions on Cybernetics, 44, 1579-1590(2014).
[10] Ma K D, Li H, Yong H W et al. Robust multi-exposure image fusion: a structural patch decomposition approach[J]. IEEE Transactions on Image Processing, 26, 2519-2532(2017).
[11] Huang F, Zhou D M, Nie R C et al. A color multi-exposure image fusion approach using structural patch decomposition[J]. IEEE Access, 6, 42877-42885(2018).
[12] Prabhakar K R, Srikar V S, Babu R V. DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs[C], 4724-4732(2017).
[13] Burt P, Adelson E. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 31, 532-540(1983).
[14] Sun J G, Han Q L, Kou L et al. Multi-focus image fusion algorithm based on Laplacian Pyramids[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 35, 480-490(2018).
[15] Yang Y C, Li J, Wang Y P. Review of image fusion quality evaluation methods[J]. Journal of Frontiers of Computer Science and Technology, 12, 1021-1035(2018).
[16] Ma K D, Zeng K, Wang Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 24, 3345-3356(2015).
[17] Wang F S, Liu Z N, Fu L J. An improved criminisi image inpainting method based on information entropy and gradient factor[J]. Laser & Optoelectronics Progress, 57, 221006(2020).
[18] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).
[19] Xue W F, Zhang L, Mou X Q et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 23, 684-695(2014).
[20] Ding Y, Zhao Y, Zhao X Y. Image quality assessment based on multi-feature extraction and synthesis with support vector regression[J]. Signal Processing: Image Communication, 54, 81-92(2017).
[21] Shao D, Han J W. Inter-transformation between YUV and RGB[J]. Journal of Changchun University, 14, 51-53(2004).
[22] Xiang F M, Zhu Z Y, Xu J et al. Research on algorithms of color space conversion from YUV to RGB[J]. Modern Electronics Technique, 35, 65-68(2012).
[23] Hayat N, Imran M. Ghost-free multi exposure image fusion technique using dense SIFT descriptor and guided filter[J]. Journal of Visual Communication and Image Representation, 62, 295-308(2019).
[24] Lee S H, Park J S, Cho N I. A multi-exposure image fusion based on the adaptive weights reflecting the relative pixel intensity and global gradient[C], 1737-1741(2018).