• Laser & Optoelectronics Progress
  • Vol. 59, Issue 24, 2415006 (2022)
Minyu Song1, Lirong Chen1,*, Jian'an Liang1, Jinpeng Li1..., Zhenzhen Niu1, Zhen Wang1 and Lili Bai2|Show fewer author(s)
Author Affiliations
  • 1College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
  • 2College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030006, Shanxi, China
  • show less
    DOI: 10.3788/LOP202259.2415006 Cite this Article Set citation alerts
    Minyu Song, Lirong Chen, Jian'an Liang, Jinpeng Li, Zhenzhen Niu, Zhen Wang, Lili Bai. Real-Time Optical Fiber End Surface Defects Detection Model Based on Lightweight Improved Network[J]. Laser & Optoelectronics Progress, 2022, 59(24): 2415006 Copy Citation Text show less
    Diagram of fiber end surface defects
    Fig. 1. Diagram of fiber end surface defects
    General structure of YOLOv5s
    Fig. 2. General structure of YOLOv5s
    Diagram of YOLOv5s substructure
    Fig. 3. Diagram of YOLOv5s substructure
    Basic unit of shuffleNetV2
    Fig. 4. Basic unit of shuffleNetV2
    ShuffleNetV2 unit down sampled in space
    Fig. 5. ShuffleNetV2 unit down sampled in space
    Structure diagram of convolutional block attention module (CBAM)
    Fig. 6. Structure diagram of convolutional block attention module (CBAM)
    Structure diagram of channel attention module
    Fig. 7. Structure diagram of channel attention module
    Structure diagram of spatial attention module
    Fig. 8. Structure diagram of spatial attention module
    Structure diagram of YOLOv5_CS
    Fig. 9. Structure diagram of YOLOv5_CS
    Comparison of mAP changes during training
    Fig. 10. Comparison of mAP changes during training
    Contrast diagram of training loss function
    Fig. 11. Contrast diagram of training loss function
    P-R graph
    Fig. 12. P-R graph
    Detection results comparison of YOLOv5_CS model and YOLOv5s model. (a), (c) YOLOv5s detection results; (b), (d) YOLOv5_CS ditection results
    Fig. 13. Detection results comparison of YOLOv5_CS model and YOLOv5s model. (a), (c) YOLOv5s detection results; (b), (d) YOLOv5_CS ditection results
    Detection results comparison of YOLOv5_CS model and YOLOv5s model. (a), (c) YOLOv5s detection results; (b), (d) YOLOv5_CS detection results
    Fig. 14. Detection results comparison of YOLOv5_CS model and YOLOv5s model. (a), (c) YOLOv5s detection results; (b), (d) YOLOv5_CS detection results
    MethodShuffleNetV2CBAMDelete convolution kernelmAP /%Infertime /ms
    YOLOv5s82.1011.5
    YOLOv5s_A84.1812.5
    YOLOv5s_B81.709.1
    YOLOv5s_C83.939.9
    YOLOv5_CS83.808.5
    Table 1. Comparison of detection results of five models
    MethodModel of capacity /MNumber of model parameters /MFloating point operations /G
    YOLOv5s14.07.116.3
    YOLOv5s_A16.28.317.4
    YOLOv5s_B7.83.98.5
    YOLOv5s_C7.94.08.6
    YOLOv5_CS2.81.33.8
    Table 2. Complexity comparison of five models
    MethodTesla T4Tesla K80
    YOLOv5s86.932.0
    YOLOv5s_A80.025.0
    YOLOv5s_B109.040.0
    YOLOv5s_C101.036.2
    YOLOv5_CS118.046.0
    Table 3. Comparison of detection speed of different graphics cards
    MethodDigPitScratch
    YOLOv5s75.179.591.6
    YOLOv5_CS77.781.492.5
    Table 4. Comparison of average precision of three types of defects
    Minyu Song, Lirong Chen, Jian'an Liang, Jinpeng Li, Zhenzhen Niu, Zhen Wang, Lili Bai. Real-Time Optical Fiber End Surface Defects Detection Model Based on Lightweight Improved Network[J]. Laser & Optoelectronics Progress, 2022, 59(24): 2415006
    Download Citation