• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 22, Issue 4, 373 (2024)
XIE Jinlin1,2,*, ZHANG Tianyu1,2, and HU Min1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11805/tkyda2023433 Cite this Article
    XIE Jinlin, ZHANG Tianyu, HU Min. Strong coupling effect of graphene Tamm Plasmon Polaritons in the terahertz band[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(4): 373 Copy Citation Text show less
    References

    [1] KALITEEVSKI M A,IORSH I,BRAND S, et al. Tamm plasmon-polaritons:possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror[J]. Physical Review B, 2007,76(16):165415.

    [2] SASIN M E,SEISYAN R P,KALITEEVSKI M A, et al. Tamm plasmon polaritons: slow and spatially compact light[J]. Applied Physics Letters, 2008,92(25):251112.

    [3] WANG Xi,JIANG Xing,YOU Qi,et al. Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene[J]. Photonics Research, 2017,5(6):536-542. doi:10.1364/PRJ.5.000536.

    [4] LI Min, LIU Chao,RUAN Banxian, et al. Strong coupling of plasmonic waves in graphene for light confinement[J]. Journal of Luminescence, 2022(252):119332. doi:10.1016/j.jlumin.2022.119332.

    [5] BIKBAEV R G, VETROV S Y, TIMOFEEV I V, et al. Tamm plasmon polaritons for light trapping in organic solar cells[J].Doklady Physics, 2020,65(5):161-163. doi:10.1134/S1028335820050079.

    [6] YANG Z Y, ISHII S, YOKOYAMA T, et al. Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons[J]. ACS Photonics, 2017,4(9):2212-2219. doi:10.1021/acsphotonics.7b00408.

    [7] LEE K J,WU J W,KIM K. Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in onedimensional photonic crystal structures[J]. Optics Express, 2013,21(23):28817-28823. doi:10.1364/OE.21.028817.

    [8] XU Wenhui,CHOU Y H,YANG Z Y,et al. Tamm Plasmon-Polariton ultraviolet lasers[J]. Advanced Photonics Research, 2022, 3(1):2100120. doi:10.1002/adpr.202100120.

    [9] HU Jigang, YAO Enxu, XIE Weiqiang, et al. Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure[J]. Optics Express, 2019,27(13):18642-18652. doi:10.1364/OE.27.018642.

    [10] ZHANG Kun,LIU Yan,XIA Feng,et al. Tuning of the polariton modes induced by longitudinal strong coupling in the graphene hybridized DBR cavity[J]. Optics Letters, 2020,45(13):3669-3672. doi:10.1364/OL.397342.

    [11] JENA S,TOKAS R B,THAKUR S,et al. Rabi-like splitting and refractive index sensing with hybrid Tamm plasmon-cavity modes[J]. Journal of Physics D:Applied Physics, 2022,55(17):175104. doi:10.1088/1361-6463/ac49b3.

    [13] WANG Xi,JIANG Xing,YOU Qi,et al. Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene[J]. Photonics Research, 2017,5(6):536-542. doi:10.1364/PRJ.5.000536.

    [14] QING Yeming,REN Yongze,LEI Dangyuan,et al. Strong coupling in two-dimensional materials-based nanostructures:a review[J]. Journal of Optics, 2022,24(2):024009. doi:10.1088/2040-8986/ac47b3.

    [15] QIN Jian, CHEN Yuhui, ZHANG Zhepeng, et al. Revealing strong plasmon-exciton coupling between nanogap resonators and two-dimensional semiconductors at ambient conditions[J]. Physical Review Letters, 2020, 124(6): 063902. doi: 10.1103/PhysRevLett.124.063902.

    XIE Jinlin, ZHANG Tianyu, HU Min. Strong coupling effect of graphene Tamm Plasmon Polaritons in the terahertz band[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(4): 373
    Download Citation