• Laser & Optoelectronics Progress
  • Vol. 61, Issue 9, 0906003 (2024)
Quan Zhang1,2,3,4, Qingchen Xu1,3,4,*, Xiong Hu1,3,4, Xiaocheng Wu1,3,4, and Junfeng Yang1,3,4
Author Affiliations
  • 1National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • 2University of Chinese Academy of Sciences, Beijing 100190, China
  • 3State Key Laboratory of Space Weather, Beijing 100190, China
  • 4Key Laboratory of Science and Technology on Environmental Space Situation Awareness, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.3788/LOP231276 Cite this Article Set citation alerts
    Quan Zhang, Qingchen Xu, Xiong Hu, Xiaocheng Wu, Junfeng Yang. Coherent Optical Communication Speed Measurement Method Based on Modulated Code Element Doppler Frequency Measurement[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0906003 Copy Citation Text show less
    References

    [1] Liu X N, Li Y F, Xiang C Y et al. Study on integrated technique of laser ranging and communication and its applications in deep space[J]. Journal of Deep Space Exploration, 5, 147-153, 167(2018).

    [2] Zhao X, Niu J P, Liu Y Q et al. Laser communication/ranging integrated technology and link characteristics in navigation satellite system[J]. Laser & Optoelectronics Progress, 52, 060601(2015).

    [3] Gounley R, White R, Gai E. Autonomous satellite navigation by stellar refraction[J]. Journal of Guidance, Control, and Dynamics, 7, 129-134(1984).

    [4] Xing Q, Zhu H, Wang B et al. Method for measuring distance, speed, clock correction, and frequency difference by utilizing two-way communication transmission frame synchronization code[P].

    [5] Yang F, Qiu Z S, Li S X et al. Research on high precision lidar velocity and range measurement system based on the technologies of pseudo-random code phase modulation and heterodyne detection[J]. Flight Control & Detection, 2, 43-48(2019).

    [6] Zhou D, Xu Y, You C et al. Laser communication detection device and method[P].

    [7] Zhu H Q, Xing Q L, Fu Y W et al. Design and realization of OOK-based unified laser TT & C system[J]. Transactions of Beijing Institute of Technology, 40, 1203-1206(2020).

    [8] Xu Y X, Xu M M, Sun J F et al. Integrated technology of communication and velocity measurement in satellite coherent optical communication[J]. Laser & Optoelectronics Progress, 53, 120603(2016).

    [9] Xu M M, Sun J F, Zhang B et al. Two-one-way laser Doppler approach for inter-satellite velocity measurement[J]. Optics Express, 27, 1353-1366(2019).

    [10] Zhang J, Yang G, Bi M et al. Laser communication and speed measurement system based on reverse modulator[P].

    [11] Tapley B D, Watkins M M, Flechtner F et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 9, 358-369(2019).

    [12] Abich K, Abramovici A, Amparan B et al. In-orbit performance of the GRACE follow-on laser ranging interferometer[J]. Physical Review Letters, 123, 031101(2019).

    [13] Rüdiger A, Heinzel G, Tröbs M[M]. LISA, the laser interferometer space antenna, requires the ultimate in lasers, clocks, and drag-free control(2015).

    [14] Gao D R, Xie Z, Ma R et al. Development current status and trend analysis of satellite laser communication(invited)[J]. Acta Photonica Sinica, 50, 0406001(2021).

    [15] Ando T, Haraguchi E, Tajima K et al. Coherent homodyne receiver with a compensator of Doppler shifts for inter orbit optical communication[J]. Proceedings of SPIE, 7923, 79230J(2011).

    [16] Withers P. Prediction of uncertainties in atmospheric properties measured by radio occultation experiments[J]. Advances in Space Research, 46, 58-73(2010).

    Quan Zhang, Qingchen Xu, Xiong Hu, Xiaocheng Wu, Junfeng Yang. Coherent Optical Communication Speed Measurement Method Based on Modulated Code Element Doppler Frequency Measurement[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0906003
    Download Citation