[1] Tünnermann A, Schreiber T, Röser F et al. The renaissance and bright future of fibre lasers[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S681-S693(2005).
[2] Limpert J, Roser F, Klingebiel S et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 537-545(2007).
[3] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).
[4] Dawson J W, Messerly M J, Beach R J et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).
[5] Yin Z, Yan F P, Liu S et al. Research of stimulated Brillouin scattering effect in 2 μm band single-frequency Raman fiber amplifier[J]. Navigation and Control, 14, 100-105(2015).
[6] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 567-577(2005).
[7] Zheng Y, Yang Y F, Zhao X et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201002(2017).
[8] Jiang M, Ma P F, Su R T et al. Research progress and prospect of spectral beam combining(Invited)[J]. Infrared and Laser Engineering, 49, 20201053(2020).
[9] Honea E, Afzal R S, Leuchs M S et al. Advances in fiber laser spectral beam combining for power scaling[J]. Proceedings of SPIE, 9730, 97300Y(2015).
[10] Zheng Y, Yang Y F, Wang J H et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 24, 12063-12071(2016).
[11] Zheng Y, Zhu Z D, Liu X X et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Applied Optics, 58, 8339-8343(2019).
[12] Jiao H F, Niu X S, Zhang X M et al. Design and fabrication of a superior nonpolarizing long-wavelength pass edge filter applied in laser beam combining technology[J]. Applied Optics, 59, A162-A166(2020).
[13] Regelskis K, Hou K C, Raciukaitis G et al. Spatial-dispersion-free spectral beam combining of high power pulsed Yb-doped fiber lasers[C](2008).
[14] Schmidt O, Wirth C, Nodop D et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filters[J]. Optics Express, 17, 22974-22982(2009).
[15] Shah L, Sims R A, Kadwani P et al. High-power spectral beam combining of linearly polarized Tm: fiber lasers[J]. Applied Optics, 54, 757-762(2015).
[16] Ludewigt K, Liem A, Stuhr U et al. High-power laser development for laser weapons[J]. Proceedings of SPIE, 11162, 1116207(2019).
[17] Chen F, Ma J, Wei C et al. 10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters[J]. Optics Express, 25, 32783-32791(2017).
[18] Ma J, Chen F, Wei C et al. Modeling and analysis of the influence of an edge filter on the combining efficiency and beam quality of a 10-kW-class spectral beam-combining system[J]. Applied Sciences, 9, 2152(2019).
[19] He X B, Xiao H, Ma P F et al. 2.3 kW fiber laser spectral beam combination based on dichromatic mirror[J]. Infrared and Laser Engineering, 50, 20200385(2021).
[20] Zheng Y, Ni Q L, Zhang L et al. Influence of stimulated Raman scattering on propagation properties of high-power laser[J]. Chinese Journal of Lasers, 48, 0701005(2021).
[21] Zheng Y, Liu X X, He M et al. Investigation on the thermal blooming effect in a high power spectral beam combining fiber laser system[J]. Applied Optics, 61, 954-959(2022).