• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1723001 (2023)
Jingli Wang1,*, Haiguang Liu1, Yueteng Zhang1, Yuchen Song1..., Hanxiao Shen1, Heming Chen2 and Kai Zhong3|Show fewer author(s)
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • 2Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • 3Key Laboratory of Optoelectronics Information Technology (Ministry of Education), School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, Jiangsu , China
  • show less
    DOI: 10.3788/LOP222232 Cite this Article Set citation alerts
    Jingli Wang, Haiguang Liu, Yueteng Zhang, Yuchen Song, Hanxiao Shen, Heming Chen, Kai Zhong. Polarization-Independent Optical Power Splitter with a Designable Splitting Ratio[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1723001 Copy Citation Text show less
    References

    [1] Dai D X, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction[J]. Light: Science & Applications, 1, 1-12(2012).

    [2] Sun J, Timurdogan E, Yaacobi A et al. Large-scale nanophotonic phased array[J]. Nature, 493, 195-199(2013).

    [3] Doerr C R, Fontaine N K, Buhl L L. PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls[J]. IEEE Photonics Technology Letters, 24, 697-699(2012).

    [4] Koren U, Miller B I, Young M G et al. A 1.3-μm wavelength laser with an integrated output power monitor using a directional coupler optical power tap[J]. IEEE Photonics Technology Letters, 8, 364-366(1996).

    [5] Kasai K, Nakazawa M, Ishikawa M et al. 8 kHz linewidth, 50 mW output, full C-band wavelength tunable DFB LD array with self-optical feedback[J]. Optics Express, 26, 5675-5685(2018).

    [6] Velha P, Sorianello V, Preite M V et al. Wide-band polarization controller for Si photonic integrated circuits[J]. Optics Letters, 41, 5656-5659(2016).

    [7] Xu H N, Shi Y C. Flat-top CWDM (de)multiplexer based on MZI with bent directional couplers[J]. IEEE Photonics Technology Letters, 30, 169-172(2018).

    [8] Qiu J F, Tian Y, Huang Z L et al. Integrated in-band OSNR monitor based on asymmetrical parallel-MZIs for WDM signals[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 467-472(2016).

    [9] Li Z Z, Huang X R, Liu Y et al. Ultra-compact low-loss variable-ratio 1×2 power splitter with ultra-low phase deviation based on asymmetric ladder-shaped multimode interference coupler[J]. Optics Express, 28, 34137-34146(2020).

    [10] Cherchi M, Ylinen S, Harjanne M et al. Unconstrained splitting ratios in compact double-MMI couplers[J]. Optics Express, 22, 9245-9253(2014).

    [11] Xu K, Liu L, Wen X et al. Integrated photonic power divider with arbitrary power ratios[J]. Optics Letters, 42, 855-858(2017).

    [12] Wang Y, Lu Z Q, Ma M L et al. Compact broadband directional couplers using subwavelength gratings[J]. IEEE Photonics Journal, 8, 7101408(2016).

    [13] Lei Z, Xin F, Lin Y. Polarization-independent, lithium-niobate-on-insulator directional coupler based on a combined coupling-sections design[J]. Applied Optics, 59, 8668-8673(2020).

    [14] Lin Z J, Shi W. Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio[J]. Optics Express, 27, 14338-14343(2019).

    [15] Mao D, Wang Y, El-Fiky E et al. Adiabatic coupler with design-intended splitting ratio[J]. Journal of Lightwave Technology, 37, 6147-6155(2019).

    [16] Zhu J B, Chao Q, Huang H Y et al. Compact, broadband, and low-loss silicon photonic arbitrary ratio power splitter using adiabatic taper[J]. Applied Optics, 60, 413-416(2021).

    [17] Kim H, Shin H. Tailorable and broadband on-chip optical power splitter[J]. Applied Sciences, 9, 4239-4248(2019).

    [18] Sia J X B, Wang W J, Guo X et al. Mid-infrared, ultra-broadband, low-loss, compact arbitrary power splitter based on adiabatic mode evolution[J]. IEEE Photonics Journal, 11, 6601111(2019).

    [19] Fujisawa T, Koshiba M. Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures[J]. IEEE Photonics Technology Letters, 18, 1246-1248(2006).

    [20] Lee C C, Chen H L, Hsu J C et al. Interference coatings based on synthesized silicon nitride[J]. Applied Optics, 38, 2078-2082(1999).

    [21] Guler I. Optical and structural characterization of silicon nitride thin films deposited by PECVD[J]. Materials Science and Engineering: B, 246, 21-26(2019).

    [22] Wang Q F, Liu S, Tang H H et al. Study on a-Si: H and SiNx films for tunable filter[C](2016).

    [23] Haus H A, Huang W. Coupled-mode theory[J]. Proceedings of the IEEE, 79, 1505-1518(1991).

    [24] Wang J L, Chen Z Y, Chen H M. Design of polarization-insensitive 1×2 directional coupler demultiplexer based on sandwiched structure[J]. Acta Physica Sinica, 70, 014202(2021).

    [25] Wang J L, Chen Z Y, Chen H M. Design of polarization-insensitive 1×2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure[J]. Acta Physica Sinica, 69, 054206(2020).

    [26] Wang J L, Huangfu L G, Chen H M. Design of compact polarization-insensitive multimode interference triplexer[J]. Journal of Modern Optics, 68, 496-506(2021).

    Jingli Wang, Haiguang Liu, Yueteng Zhang, Yuchen Song, Hanxiao Shen, Heming Chen, Kai Zhong. Polarization-Independent Optical Power Splitter with a Designable Splitting Ratio[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1723001
    Download Citation