[1] DANG Z M, YUAN J K, YAO S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Adv Mater, 2013, 25(44): 6334-6365.
[2] SUN S B, SHI Z C, SUN L, et al. Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer[J]. ACS Appl Mater Interfaces, 2021, 13(23): 27522-27532.
[3] YAO L, WANG D R, HU P H, et al. Synergetic enhancement of permittivity and breakdown strength in all-polymeric dielectrics toward flexible energy storage devices[J]. Adv Mater Inter, 2016, 3(13): 1600016.
[4] ZHU Y F, ZHANG Z B, LITT M H, et al. High dielectric constant sulfonyl-containing dipolar glass polymers with enhanced orientational polarization[J]. Macromolecules, 2018, 51(16): 6257-6266.
[5] HO J, JOW T R. High field conduction in biaxially oriented polypropylene at elevated temperature[J]. IEEE Trans Dielectr Electr Insul, 2012, 19(3): 990-995.
[6] YE H R, YANG F, PAN Z B, et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications[J]. Acta Mater, 2021, 203: 116484.
[7] LI H, XIE Z L, LIU L L, et al. High-performance insulation materials from poly(ether imide)/boron nitride nanosheets with enhanced DC breakdown strength and thermal stability[J]. IEEE Trans Dielectr Electr Insul, 2019, 26(3): 722-729.
[8] HANLEY T L, BURFORD R P, FLEMING R J, et al. A general review of polymeric insulation for use in HVDC cables[J]. IEEE Electr Insul Mag, 2003, 19(1): 13-24.
[9] AZIZI A, GADINSKI M R, LI Q, et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials[J]. Adv Mater, 2017, 29(35): 1701864.
[10] CHI Q G, XU L M, ZHANG C H, et al. Enhancing the high-temperature energy storage performance of PEI dielectric film through deposition of high-dielectric PZT coating layer [J]. Ceram Int, 2023, 49(16): 26246-26255.
[11] REN L L, YANG L J, ZHANG S Y, et al. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors[J]. Compos Sci Technol, 2021, 201: 108528.
[12] LI X N, LUO H, YANG C C, et al. Enhancing high-temperature energy storage performance of PEI-based dielectrics by incorporating ZIF-67 with a narrow bandgap[J]. ACS Appl Mater Interfaces, 2023, 15(35): 41828-41838.
[13] LIN S, KUANG X W, WANG F H, et al. Effect of TiO2 crystalline composition on the dielectric properties of TiO2/P(VDF-TrFE) composites[J]. Phys Status Solidi RRL, 2012, 6(8): 352-354.
[14] DANG Z M, YOU S S, ZHA J W, et al. Effect of shell-layer thickness on dielectric properties in Ag@TiO2 core@shell nanoparticles filled ferroelectric poly(vinylidene fluoride) composites[J]. Phys Status Solidi A, 2010, 207(3): 739-742.
[15] MO T C, WANG H W, CHEN S Y, et al. Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites[J]. Ceram Int, 2008, 34(7): 1767-1771.
[16] ZHA J W, DANG Z M, ZHOU T, et al. Electrical properties of TiO2-filled polyimide nanocomposite films prepared via an in situ polymerization process[J]. Synth Met, 2010, 160(23/24): 2670-2674.
[17] MALIAKAL A, KATZ H, COTTS P M, et al. Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications[J]. J Am Chem Soc, 2005, 127(42): 14655-14662.
[18] HAN Yidan, WANG Kai, XU Zhijian, et al. J Chin Ceram Soc, 2012, 40(9): 1289-1293.
[19] XIE Xian, HUANG Guidong, HAO Yanping, et al. J Beijing Inst Graph Commun, 2016, 24(4): 74-78.
[20] WANG Y F, CUI J, WANG L X, et al. Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/ polymer nanocomposites[J]. J Mater Chem A, 2017, 5(9): 4710-4718.
[21] ZHANG Y H, LU S G, LI Y Q, et al. Novel silica tube/polyimide composite films with variable low dielectric constant[J]. Adv Mater, 2005, 17(8): 1056-1059.
[22] RYTOLUOTO I, LAHTI K. New approach to evaluate area-dependent breakdown characteristics of dielectric polymer films[J]. IEEE Trans Dielectr Electr Insul, 2013, 20(3): 937-946.
[23] FAN M Z, HU P H, DAN Z K, et al. Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles[J]. J Mater Chem A, 2020, 8(46): 24536-24542.
[24] STARK K H, GARTON C G. Electric strength of irradiated polythene[J]. Nature, 1955, 176(4495): 1225-1226.
[25] ZHU M, HUANG X Y, YANG K, et al. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: Understanding the role of polymer shells in the interfacial regions[J]. ACS Appl Mater Interfaces, 2014, 6(22): 19644-19654.
[26] SUN L, SHI Z C, HE B L, et al. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors[J]. Adv Funct Mater, 2021, 31(35): 2100280.
[27] MIAO W J, CHEN H X, PAN Z B, et al. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage[J]. Compos Sci Technol, 2021, 201: 108501.