• Laser & Optoelectronics Progress
  • Vol. 60, Issue 19, 1927002 (2023)
Changlan Zhao and Tianyi Wang*
Author Affiliations
  • College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, China
  • show less
    DOI: 10.3788/LOP222511 Cite this Article Set citation alerts
    Changlan Zhao, Tianyi Wang. Security Analysis of Phase Encoding Continuous-Variable Quantum Key Distribution Based on K-Nearest Neighbor[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1927002 Copy Citation Text show less

    Abstract

    This paper proposes a phase encoding, continuous-variable quantum key distribution quantum-state identification method based on the K-nearest neighbor algorithm. The algorithm achieves recognition using the phase features of the accepted quantum states, which are first learned from a training set consisting of known coherent states and then classified according to the phase features extracted from the unknown quantum states. Moreover, this paper derives the secure code rate of the K-nearest neighbor-based identification method under collective attack and reverse coordination and compares the performance of the method applied to four-state and eight-state protocols under different transmission distances, modulation variance, and excess noise. The results of numerical simulation results show that the method can effectively generate secure keys with a transmission distance of 250 km when the secure code rate is 10-5 bit per symbol.
    S4=αexpiπ/4,αexp3iπ/4,αexp5iπ/4,αexp7iπ/4,
    S8=α,αexpiπ/4,αexpiπ/2, αexp3iπ/4,αexpiπ,αexp5iπ/4, αexp3iπ/2,αexp7iπ/4
    ρd=i=0dλiϕi><ϕi,d4,8
    ρ4=i=03λiϕiϕi
    λ0,2=12exp-α2coshα2±cosα2λ1,3=12exp-α2sinhα2±sinα2
    ϕk=exp-α2/2λkn=0-1nα4n+k4n+k!4n+k,k0,1,2,3
    ρ8=i=07λiϕiϕi
    λ0,4=14exp-α2coshα2+cosα2±2cosα22coshα22λ1,5=14exp-α2sinhα2+sinα2±2cosα22sinhα22±2sinα22coshα22λ2,6=14exp-α2coshα2-cosα2±2sinα22sinhα22λ3,7=14exp-α2sinhα2-sinα22cosα22sinhα22±2sinα22coshα22
    ϕk=exp-α2/2λkn=0α8n+k8n+k!8n+k,k0,1,2,,7
    Γd=VIZdσzZdσzVI
    p'=Tαcosφ+N0,Tε,
    q'=Tαsinφ+N0,Tε
    θa,b=arctany1x1-arctany2x2
    Cj=x*,Y*N(x)yjY*
    h(x)=yjPHjCj/PH¯jCj>t(x),1jl
    fx,yj=PHjCjPH¯jCj=PHjPCjHjPH¯jPCjH¯j,
    PHj=s+i=1myjYis×2+m,(1jl),
    PH¯j=1-PHj,(1jl),
    ςj[r]=i=1myjYiψjxi=r,(0rk)ς¯j[r]=i=1myjYiψjxi=r,(0rk)
    ψjxi=x*,Y*Nx*yjY*,
    PCjHj=s+ςjCjs×(k+1)+r=0kςj[r]PCjH¯j=s+ς¯jCjs×(k+1)+r=0kς¯j[r]
    K=βIAB-χ,
    IAB=log2V+χtot1+χtot,
    χ=i=12Gλi-12-i=35Gλi-12,
    λ1,22=12A±A2-4Bλ3,42=12C±C2-4D
    A=V2+T2V+χline2-2TZ2B=T2V2+Vχline-Z22C=1T2V+χtot2Aχhet2+B+1+2χhetVB+TV+χline+2TZ2D=V+BχhetTV+χtot2
    Kknn=ΛTβIAB-χknn,
    χknn=SρE-yimpyiSρEyi,
    ρE=yimpyiρEyi
    Changlan Zhao, Tianyi Wang. Security Analysis of Phase Encoding Continuous-Variable Quantum Key Distribution Based on K-Nearest Neighbor[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1927002
    Download Citation