[1] RAYKO I S, YU X, THIERRY B, et al. Real-time terahertz imaging with a single-pixel etector[J]. Nature communication, 2020, 11: 225351-225358.
[2] COCKER T L, JELIC V, HILLENBRAND R, et al. Nanoscale terahertz scanning probe microscopy[J]. Nature photonics, 2021, 15: 558-569.
[3] JIN M H, WANG Y X, CHAI M Q, et al. Terahertz detectors based on carbon nanomaterials[J]. Advanced functional materials, 2022, 32, 2107499: 1-16.
[4] MAENG I H, CHEN S, LEE S J, et al. Predicted THz-wave absorption properties observed in all-inorganic perovskite CsPbI3 thin films: integrity at the grain boundary[J]. Materials today physics, 2023, 30: 100960 1-7.
[5] LI M Y, XU H, WANG S L, et al. Ion-bolometric effect in grain boundaries enabled high photovoltage response for NIR to terahertz photodetection[J]. Advanced functional materials, 2023, 33, 2213970: 1-9.
[6] ZHENG Z P, ZHAO S Y, LIU Y H, et al. Discrimination of maleic hydrazide polymorphs using terahertz spectroscopy and density functional theory[J]. Optoelectronics letters, 2023, 19(8): 493-497.
[7] BAI Y K, LI S. Terahertz dual-beam leaky-wave antenna based on composite spoof surface plasmon wave-guide[J]. Optoelectronics letters, 2023, 19(2): 72-76.
[8] WELP U, KADOWAKI K, KLEINER R. Supercon-ducting emitters of THz radiation[J]. Nature photonics, 2013, 7: 702-710.
[9] YANG H H, REBEIZ G M. Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer[J]. Applied physics letters, 2016, 108: 053096.
[10] DYAKONOV M I, SHUR M S. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current[J]. Physical review letters, 1993, 71: 2465.
[11] VICARELLI L, VITIELLO M S, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11: 865.
[12] KNAP W, DYAKONOV M, COQUILLAT D, et al. Field effect transistors for terahertz detection: physics and first imaging applications[J]. International journal of infrared and millimeter waves, 2009, 30: 1319-1337.
[13] SCHUSTER F, COQUILLAT D, VIDELIER H, et al. Broadband terahertz imaging with highly sensitive silicon CMOS detectors[J]. Optics express, 2011, 19: 7827-7832.
[14] TAUK R, TEPPE F, BOUBANGA S, et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power[J]. Applied physics letters, 2006, 89: 253511.
[15] HUANG Z M, TONG J C, HUANG J G, et al. Room-temperature photoconductivity far below the semiconductor bandgap[J]. Advanced materials, 2014, 26: 6594-6598.
[16] HUANG Z M, ZHOU W, TONG J C, et al. Extreme sensitivity of room-temperature photoelectric effect for terahertz detection[J]. Advanced materials, 2016, 28: 112-117.
[17] LU X H, JING C B, WANG L W, et al. Improved room-temperature silicon terahertz photodetector on sapphire substrate[J]. Chinese physics letters, 2019, 36: 098501.
[18] SIEGEL P H. Terahertz technology[J]. IEEE transactions on microwave theory and techniques, 2002, 50: 910.
[19] HUBERS H W. Terahertz heterodyne receivers[J]. IEEE journal of selected topics in quantum electronics, 2008, 14: 378.
[20] AHMAD Z, LISAUSKAS A, ROSKOS H G, et al. 9.74-THz electronic far-infrared detection using Schottky barrier diodes in CMOS[J]. IEEE international electron devices meeting, 2014, 14: 92-95.
[21] WESTLUND A, SANGARE P, DUCOURNAU G, et al. Terahertz detection in zero-bias InAs self-switching diodes at room temperature[J]. Applied physics letters, 2013, 103: 133504.
[22] VICARELLI L, VITIELLO M, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11: 865.
[23] TONG J Y, MUTHEE M, CHEN S Y, et al. Antenna enhanced graphene THz emitter and detector[J]. Nano letters, 2015, 15: 5295.
[24] GENERALOV A A, ANDERSSON M A, YANG X X, et al. A 400-GHz graphene FET detector[J]. IEEE transactions on terahertz science and technology, 2017, 7: 614.
[25] GUO W L, WANG L, CHEN X S, et al. Graphene based broadband terahertz detector integrated with a square-spiral antenna[J]. Optics letters, 2018, 43: 1647-1650.
[26] VITIELLO M S, COQUILLAT D, VITI L, et al. Room-temperature terahertz detectors based on semi-conductor nanowire field-effect transistors[J]. Nano letters, 2012, 12: 96-101.
[27] MIDDLETON C, ZUMMO G, WEEKS A, et al. Passive millimeter wave focal plane array[J]. Proc. SPIE, 2014, 5410: 745.
[28] MILLER A, LUUKANEN A, GROSSMAN E N. Micromachined antenna-coupled uncooled microbolometers for terahertz imaging arrays[J]. Proc. SPIE, 2004, 5411: 18.
[29] TU X C, KANG L, WAN C, et al. Diffractive microlens integrated into Nb5N6 microbolometers for THz detection[J]. Optics express, 2015, 23: 13794.
[30] LU X H, KANG L, ZHOU L, et al. Growth and characterization of a kind of nitrogen-rich niobium nitride for bolometer applications at terahertz frequencies[J]. Chinese physics letters, 2008, 25: 098501.
[31] https://www.vadiodes.com/en/.
[32] TANG W W, LIU C L, WANG L, et al. MoS2 nanosheet photodetectors with ultrafast response[J]. Applied physics letters, 2017, 111: 153502.
[33] OJEFORS E, PFEIFFER U, LISAUSKAS A, et al. A 0.65 THz focal-plane array in a quarter micron CMOS process technology[J]. IEEE journal of solid-state circuits, 2009, 44(7): 1968-1976.
[34] HESLER J L, CROWE T W. Responsivity and noise measurements of zero-bias Schottky diode detectors[C]//The 18th International Symposium on Space Terahertz Technology, March 21-23, 2007, Pasadena, CA, USA. ISSTT, 2007: 89-92.
[35] EMINOGLU S, TANRIKULU M, AKIN T. A low-cost 128 × 128 uncooled infrared detector array in CMOS process[J]. Journal of microelectromechanical systems, 2008, 17: 20-30.
[36] QMC Instruments Ltd. OAD-7 Golay detector operating manual[M]. Cardiff, 2005.