• Optoelectronics Letters
  • Vol. 20, Issue 11, 641 (2024)
Xuehui LU, Binding LIU, Chengzhu CHI, Feng LIU, and Wangzhou SHI
DOI: 10.1007/s11801-024-3236-9 Cite this Article
LU Xuehui, LIU Binding, CHI Chengzhu, LIU Feng, SHI Wangzhou. Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection*[J]. Optoelectronics Letters, 2024, 20(11): 641 Copy Citation Text show less
References

[1] RAYKO I S, YU X, THIERRY B, et al. Real-time terahertz imaging with a single-pixel etector[J]. Nature communication, 2020, 11: 225351-225358.

[2] COCKER T L, JELIC V, HILLENBRAND R, et al. Nanoscale terahertz scanning probe microscopy[J]. Nature photonics, 2021, 15: 558-569.

[3] JIN M H, WANG Y X, CHAI M Q, et al. Terahertz detectors based on carbon nanomaterials[J]. Advanced functional materials, 2022, 32, 2107499: 1-16.

[4] MAENG I H, CHEN S, LEE S J, et al. Predicted THz-wave absorption properties observed in all-inorganic perovskite CsPbI3 thin films: integrity at the grain boundary[J]. Materials today physics, 2023, 30: 100960 1-7.

[5] LI M Y, XU H, WANG S L, et al. Ion-bolometric effect in grain boundaries enabled high photovoltage response for NIR to terahertz photodetection[J]. Advanced functional materials, 2023, 33, 2213970: 1-9.

[6] ZHENG Z P, ZHAO S Y, LIU Y H, et al. Discrimination of maleic hydrazide polymorphs using terahertz spectroscopy and density functional theory[J]. Optoelectronics letters, 2023, 19(8): 493-497.

[7] BAI Y K, LI S. Terahertz dual-beam leaky-wave antenna based on composite spoof surface plasmon wave-guide[J]. Optoelectronics letters, 2023, 19(2): 72-76.

[8] WELP U, KADOWAKI K, KLEINER R. Supercon-ducting emitters of THz radiation[J]. Nature photonics, 2013, 7: 702-710.

[9] YANG H H, REBEIZ G M. Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer[J]. Applied physics letters, 2016, 108: 053096.

[10] DYAKONOV M I, SHUR M S. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current[J]. Physical review letters, 1993, 71: 2465.

[11] VICARELLI L, VITIELLO M S, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11: 865.

[12] KNAP W, DYAKONOV M, COQUILLAT D, et al. Field effect transistors for terahertz detection: physics and first imaging applications[J]. International journal of infrared and millimeter waves, 2009, 30: 1319-1337.

[13] SCHUSTER F, COQUILLAT D, VIDELIER H, et al. Broadband terahertz imaging with highly sensitive silicon CMOS detectors[J]. Optics express, 2011, 19: 7827-7832.

[14] TAUK R, TEPPE F, BOUBANGA S, et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power[J]. Applied physics letters, 2006, 89: 253511.

[15] HUANG Z M, TONG J C, HUANG J G, et al. Room-temperature photoconductivity far below the semiconductor bandgap[J]. Advanced materials, 2014, 26: 6594-6598.

[16] HUANG Z M, ZHOU W, TONG J C, et al. Extreme sensitivity of room-temperature photoelectric effect for terahertz detection[J]. Advanced materials, 2016, 28: 112-117.

[17] LU X H, JING C B, WANG L W, et al. Improved room-temperature silicon terahertz photodetector on sapphire substrate[J]. Chinese physics letters, 2019, 36: 098501.

[18] SIEGEL P H. Terahertz technology[J]. IEEE transactions on microwave theory and techniques, 2002, 50: 910.

[19] HUBERS H W. Terahertz heterodyne receivers[J]. IEEE journal of selected topics in quantum electronics, 2008, 14: 378.

[20] AHMAD Z, LISAUSKAS A, ROSKOS H G, et al. 9.74-THz electronic far-infrared detection using Schottky barrier diodes in CMOS[J]. IEEE international electron devices meeting, 2014, 14: 92-95.

[21] WESTLUND A, SANGARE P, DUCOURNAU G, et al. Terahertz detection in zero-bias InAs self-switching diodes at room temperature[J]. Applied physics letters, 2013, 103: 133504.

[22] VICARELLI L, VITIELLO M, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11: 865.

[23] TONG J Y, MUTHEE M, CHEN S Y, et al. Antenna enhanced graphene THz emitter and detector[J]. Nano letters, 2015, 15: 5295.

[24] GENERALOV A A, ANDERSSON M A, YANG X X, et al. A 400-GHz graphene FET detector[J]. IEEE transactions on terahertz science and technology, 2017, 7: 614.

[25] GUO W L, WANG L, CHEN X S, et al. Graphene based broadband terahertz detector integrated with a square-spiral antenna[J]. Optics letters, 2018, 43: 1647-1650.

[26] VITIELLO M S, COQUILLAT D, VITI L, et al. Room-temperature terahertz detectors based on semi-conductor nanowire field-effect transistors[J]. Nano letters, 2012, 12: 96-101.

[27] MIDDLETON C, ZUMMO G, WEEKS A, et al. Passive millimeter wave focal plane array[J]. Proc. SPIE, 2014, 5410: 745.

[28] MILLER A, LUUKANEN A, GROSSMAN E N. Micromachined antenna-coupled uncooled microbolometers for terahertz imaging arrays[J]. Proc. SPIE, 2004, 5411: 18.

[29] TU X C, KANG L, WAN C, et al. Diffractive microlens integrated into Nb5N6 microbolometers for THz detection[J]. Optics express, 2015, 23: 13794.

[30] LU X H, KANG L, ZHOU L, et al. Growth and characterization of a kind of nitrogen-rich niobium nitride for bolometer applications at terahertz frequencies[J]. Chinese physics letters, 2008, 25: 098501.

[31] https://www.vadiodes.com/en/.

[32] TANG W W, LIU C L, WANG L, et al. MoS2 nanosheet photodetectors with ultrafast response[J]. Applied physics letters, 2017, 111: 153502.

[33] OJEFORS E, PFEIFFER U, LISAUSKAS A, et al. A 0.65 THz focal-plane array in a quarter micron CMOS process technology[J]. IEEE journal of solid-state circuits, 2009, 44(7): 1968-1976.

[34] HESLER J L, CROWE T W. Responsivity and noise measurements of zero-bias Schottky diode detectors[C]//The 18th International Symposium on Space Terahertz Technology, March 21-23, 2007, Pasadena, CA, USA. ISSTT, 2007: 89-92.

[35] EMINOGLU S, TANRIKULU M, AKIN T. A low-cost 128 × 128 uncooled infrared detector array in CMOS process[J]. Journal of microelectromechanical systems, 2008, 17: 20-30.

[36] QMC Instruments Ltd. OAD-7 Golay detector operating manual[M]. Cardiff, 2005.

LU Xuehui, LIU Binding, CHI Chengzhu, LIU Feng, SHI Wangzhou. Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection*[J]. Optoelectronics Letters, 2024, 20(11): 641
Download Citation