• Laser & Optoelectronics Progress
  • Vol. 61, Issue 5, 0523001 (2024)
Cheng Zhang1, Yin Xu1,2, Yue Dong1,2, Bo Zhang1,2, and Yi Ni1,2,*
Author Affiliations
  • 1School of IoT Engineering, Jiangnan University, Wuxi 214122, Jiangsu , China
  • 2Institute of Advanced Technology, Jiangnan University, Wuxi 214122, Jiangsu , China
  • show less
    DOI: 10.3788/LOP230829 Cite this Article Set citation alerts
    Cheng Zhang, Yin Xu, Yue Dong, Bo Zhang, Yi Ni. Lithium Niobate Waveguide Mode Converter Based on V-Shaped Silicon[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0523001 Copy Citation Text show less
    The proposed LNOI-based waveguide mode converter using V-shaped silicon. (a) Schematic; (b) top and side view
    Fig. 1. The proposed LNOI-based waveguide mode converter using V-shaped silicon. (a) Schematic; (b) top and side view
    Device performance dependent on the deviation distance y of the array. (a) Mode conversion efficiency; (b) mode crosstalk; (c) insertion loss
    Fig. 2. Device performance dependent on the deviation distance y of the array. (a) Mode conversion efficiency; (b) mode crosstalk; (c) insertion loss
    Device performance dependent on the period number N and period T of the V-shaped silicon.(a)N=18;(b)N=14;(c)N=16;(d)N=20;(e)N=22;(f)N=24
    Fig. 3. Device performance dependent on the period number N and period T of the V-shaped silicon.(a)N=18;(b)N=14;(c)N=16;(d)N=20;(e)N=22;(f)N=24
    Width w and sag length d of the V-shaped silicon affecting on the device performance.(a)d=0.8 μm;(b)d=0.4 μm;(c)d=0.6 μm;(d)d=1 μm;(e)d=1.2 μm;(f)d=1 μm,w=400 nm
    Fig. 4. Width w and sag length d of the V-shaped silicon affecting on the device performance.(a)d=0.8 μm;(b)d=0.4 μm;(c)d=0.6 μm;(d)d=1 μm;(e)d=1.2 μm;(f)d=1 μm,w=400 nm
    Device performance dependent on the thickness h of the silicon array.(a)h=100 nm;(b)h =150 nm;(c)h=200 nm;(d)h=250 nm;(e)h=300 nm;(f)h=250 nm,T=500 nm
    Fig. 5. Device performance dependent on the thickness h of the silicon array.(a)h=100 nm;(b)h =150 nm;(c)h=200 nm;(d)h=250 nm;(e)h=300 nm;(f)h=250 nm,T=500 nm
    The improvement effect of period T on device performance. (a) Mode conversion efficiency; (b) bandwidth analysis
    Fig. 6. The improvement effect of period T on device performance. (a) Mode conversion efficiency; (b) bandwidth analysis
    Electric field evolution of the proposed TFLN waveguide based TE0-to-TE1 mode converter
    Fig. 7. Electric field evolution of the proposed TFLN waveguide based TE0-to-TE1 mode converter
    Device performance dependent on key dimensions. (a) Sag length d;(b) width w; (c) thickness h
    Fig. 8. Device performance dependent on key dimensions. (a) Sag length d;(b) width w; (c) thickness h
    Electric field evolution of the proposed TFLN waveguide based TE0-to-TE2 mode converter
    Fig. 9. Electric field evolution of the proposed TFLN waveguide based TE0-to-TE2 mode converter
    Parameter

    T /

    nm

    α /

    (°)

    d /

    µm

    w /

    nm

    y /

    µm

    h /

    nm

    N
    Value5305014000.925020
    Table 1. Structural parameters of proposed TFLN waveguide based TE0-to-TE1 mode converter
    Parameter

    T /

    nm

    α /

    (°)

    d /

    µm

    w /

    nm

    y /

    µm

    h /

    nm

    N
    Value5005014001.425020
    Table 2. Structural parameters of proposed TFLN waveguide based TE0-to-TE2 mode converter