• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1030001 (2023)
Yanfang Ju1,2, Guochao Gu1, Bo Li1,*, Guanyu Lin1,4..., Zhengzheng Ma3 and Bin Xu3|Show fewer author(s)
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3The 22nd Research Institute, China Electronics Technology Group Corporation, Qingdao 266107, Shandong, China
  • 4Innovation Center for FengYun Meteorological Satellite, Beijing 100081, China
  • show less
    DOI: 10.3788/LOP222759 Cite this Article Set citation alerts
    Yanfang Ju, Guochao Gu, Bo Li, Guanyu Lin, Zhengzheng Ma, Bin Xu. Stray-Light Suppression of Far Ultraviolet Ionization Layer Hyperspectral Imager[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1030001 Copy Citation Text show less
    Observation diagram
    Fig. 1. Observation diagram
    Optical system structure diagram
    Fig. 2. Optical system structure diagram
    Schematic of mechanical structure
    Fig. 3. Schematic of mechanical structure
    Three-dimensional model of the system
    Fig. 4. Three-dimensional model of the system
    Geometric diagram of bidirectional scattering distribution function
    Fig. 5. Geometric diagram of bidirectional scattering distribution function
    Schematic of energy transmission between micro panels
    Fig. 6. Schematic of energy transmission between micro panels
    Light source spectral weight
    Fig. 7. Light source spectral weight
    Ray tracing diagram (before inhibition)
    Fig. 8. Ray tracing diagram (before inhibition)
    Ray tracing diagram (after inhibition)
    Fig. 9. Ray tracing diagram (after inhibition)
    Energy distribution diagram (before inhibition)
    Fig. 10. Energy distribution diagram (before inhibition)
    Energy distribution diagram (after inhibition)
    Fig. 11. Energy distribution diagram (after inhibition)
    Image plane energy of each field of view
    Fig. 12. Image plane energy of each field of view
    Diffraction order energy of the grating
    Fig. 13. Diffraction order energy of the grating
    Noncentral wavelength energy distribution
    Fig. 14. Noncentral wavelength energy distribution
    Full band energy distribution
    Fig. 15. Full band energy distribution
    Technical indicatorValue
    Field of view /[(°)×(°)]11.8×0.176
    Wavelength /nm115-180
    F#3
    Entrance pupil aperture /mm25
    Spectral resolution /nm2
    Spatial resolution /km10
    Device dimension /(mm×mm)16×16
    Stray light level10-2
    Table 1. Technical indicators
    DeviceParameterValue
    Entrance pupilSize /(mm×mm)25×25
    LE-T /mm120
    Telescope mirrorTypeOff-axis parabolic mirror
    Radius /mm-150
    LT-S /mm-75
    slitWidth /mm0.23
    LS-G /mm-196
    TypeToroidal grating
    Diffraction gratingRadius /mm200/195.86
    Reticle density /(lp·mm-11200
    Diffraction order+1
    Incidence angle /(°)12.25
    Diffraction angle /(°)0.22
    LG-I /mm193.97
    Table 2. Structural parameters
    ModelContent
    Light source500 mm away from the pupil
    Radiant power /W1
    Off-axis parabolic mirrorReflectivity 95%;absorption 5%
    Toroidal gratingWork level +1;1200 line/mm
    Mechanical surfaceLambert reflectance 2.5%;absorption 97.5%
    Number of scattered rays10
    Receiving surfaceMechanical absorber
    Number of trace rays2500000
    Table 3. Optical mechanical model parameters
    Wavelength /nmPower /W
    Stray light coefficient0.9975%
    115-1809.15597×10-4
    Stray light9.13×10-6
    Table 4. Central wavelength stray light level
    Yanfang Ju, Guochao Gu, Bo Li, Guanyu Lin, Zhengzheng Ma, Bin Xu. Stray-Light Suppression of Far Ultraviolet Ionization Layer Hyperspectral Imager[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1030001
    Download Citation