• Optics and Precision Engineering
  • Vol. 17, Issue 3, 549 (2009)
ZHANG Dong1,*, ZHANG Cheng-jin1, and WEI Qiang2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Dong, ZHANG Cheng-jin, WEI Qiang. Dynamic hysteresis model of piezopositioning stage[J]. Optics and Precision Engineering, 2009, 17(3): 549 Copy Citation Text show less
    References

    [1] LIU J B. Technology of Precision Stage in Micro-nano Fabrication[M]. Beijing: Publishing House of Beijing University of Technology, 2004. (in Chinese)

    [2] LI Q X, WANG D SH, LI Y H. Design of Modern Precision Instruments[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)

    [3] MA L, RONG W B, SUN L N. Design and analysis of a novel 3-DOF nano positioning stage[J]. Opt. Precision Eng., 2006,14(6):1017-1024. (in Chinese)

    [4] DEVASIA S, ELEFTHERIOU E, MOHEIMANI S O R. A survey of control issues in nanopositioning[J]. IEEE Transactions on Control Systems Technolog, 2007,15(5):802-823.

    [5] BASHASH S, JALILI N. Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems[J]. IEEE Transactions on Control Systems Technology, 2007,15(5):867-878.

    [6] LEANG K K, DEVASIA S. Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators[J]. IEEE Transactions on Control Systems Technology, 2007,15(5):927-935.

    [7] SUN L N, SUN SH Y, QU D SH, et al.. Micro-drive positioning system based on PZT and its control[J]. Opt. Precision Eng., 2004,12(1): 55-59.(in Chinese)

    [8] TIAN X J, WANG CH Y, Xi N, et al.. Actuator actuating and probe positioning of robotic nanomanipulation[J]. Chinese Journal of Scientific Instrument, 2007,28(7):1223-1228. (in Chinese)

    [9] LI CH T, TAN Y H. Modeling and control for nonlinear systems with hysteresis[J]. Control Theory and Application, 2005,22(2):281-287. (in Chinese)

    [10] WEI Q, ZHANG Y L. Modeling method of micro-displacement stage driven by piezoelectric ceramic[J]. Opt. Precision Eng., 2007,15(10):1596-1601. (in Chinese)

    [11] WEI Q, ZHANG Y L, YU X L, et al.. Study on neural network PID control for micro-displacement stage of Scanning Tunneling Microscope[J]. Opt. Precision Eng.,2006,14(3):422-427. (in Chinese)

    [12] LIN F J, SHIEH H J, HUANG P K. Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism[J]. IEEE Transactions on Neural Networks, 2006,17(2):432-444.

    [13] ADRIAENS H, de KONING W, BANNING R. Modeling piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics, 2000,5(4):331-341.

    [14] ANG W T, GARMN F A, KHOSLA P K, et al.. Modeling rate-dependent hysteresis in piezoelectric actuators[C]. Proceeding of IEEE International conference on intelligent robots and systems, 2003(2):1975-1980.

    [15] SHIEH H J, HSU C H. An integrator-backstepping-based dynamic surface control method for a two-axis piezoelectric micropositioning stage[J]. IEEE Transactions on Control Systems Technology,2007(5):916-926.

    [16] KREJCI P, KUHNEN K. Inverse control of system with hysteresis and creep[C]. IEE Proc.Control Theory Appl., 2001,148(3):185-192.

    [17] GE P, MUSA J. Modeling hysteresis in piezoceramic actuators[J]. Precision Engineering, 1995(1):211-221.

    [18] KUHNEN K, JANOCHA H. Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems[J]. Control Intell. Syst., 2001,29:74-83.

    [19] JANOCHA H, PESOTSKI D, KUHNEN K. FPGA-based compensator of hysteretic actuator nonlinearities for highly dynamic applications[J]. IEEE/ASME Transactions on mechatronics, 2008,13(1):112-116

    CLP Journals

    [1] WEI Qiang, ZHANG Cheng-jin, ZHANG Dong, WANG Chun-ling. Neural network control for piezo-actuator using sliding-mode technique[J]. Optics and Precision Engineering, 2012, 20(5): 1055

    [2] YANG Bin-tang, ZHAO Yin, PENG Zhi-ke, MENG Guang. Real-time compensation control of hysteresis based on Prandtl-Ishlinskii operator for GMA[J]. Optics and Precision Engineering, 2013, 21(1): 124

    [3] ZHANG Dong, ZHANG Cheng-jin, WEI Qiang, TIAN Yan-bing, ZHAO Jing-bo, LI Xian-ming. Modeling and control of piezo-stage using neural networks[J]. Optics and Precision Engineering, 2012, 20(3): 587

    [4] YIN Bo-hua, CHEN Dai-xie, LIN Yun-sheng, CHU Ming-zhang, HAN Li. Design of AFM system with high speed and large scanning range[J]. Optics and Precision Engineering, 2011, 19(11): 2651

    [5] ZHANG Gui-lin, ZHANG Cheng-jin, ZHAO Xue-liang. Modeling of nonlocal memory hysteresis in piezoelectric actuators[J]. Optics and Precision Engineering, 2012, 20(5): 996

    [6] YANG Xiao-jing, PENG Yun-hao, LI Yao. Dynamic hysteresis modeling and experimental verification of piezoelectric positioning stage[J]. Optics and Precision Engineering, 2016, 24(9): 2255

    ZHANG Dong, ZHANG Cheng-jin, WEI Qiang. Dynamic hysteresis model of piezopositioning stage[J]. Optics and Precision Engineering, 2009, 17(3): 549
    Download Citation