Xunsheng Ji, Hao Wang. Head Detection Method Based on Optimized Deformable Regional Fully Convolutional Neutral Networks[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141009

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 56, Issue 14, 141009 (2019)

Fig. 1. Schematic of optimized regional fully convolutional neural network model

Fig. 2. Connection modes of different convolution layers. (a) Traditional VGG convolution connection; (b) convolutional connection of 50-layer residual network

Fig. 3. Schematics of deformable convolution with different migration modes. (a) General convolution; (b) deformable convolution; (c) convolutional ideal arrangement; (d) convolutional rotation transformation

Fig. 4. Flow chart of deformable convolution

Fig. 5. Schematic of RPN network structure in model

Fig. 6. Pooling operation of ROI

Fig. 7. Pooling of deformable position-sensitive ROI

Fig. 8. Pooling of deformable position-sensitive ROI in the proposed method

Fig. 9. Small scale measurement in dark light

Fig. 10. Test under dark-light and background interference

Fig. 11. Multi-object boundary box overlapping test

Fig. 12. Multi-object and multi-scale test

Fig. 13. Small-scale occlusion test

Fig. 14. Multi-object occlusion test

Fig. 15. Two-object occlusion test

Fig. 16. Small-scale fuzzy object test

Fig. 17. Multi-object frontal head test

Fig. 18. Multi-object occlusion side head test
|
Table 1. mAP and test speed of different models on HollywoodHeads

Set citation alerts for the article
Please enter your email address