• Laser & Optoelectronics Progress
  • Vol. 61, Issue 18, 1837015 (2024)
Wen Guo1, Hong Yang1, and Chang Liu2,*
Author Affiliations
  • 1School of science, Beijing Information Science and Technology University, Beijing 100029, China
  • 2Institute of Applied Mathematics, Beijing Information Science and Technology University, Beijing 100101, China
  • show less
    DOI: 10.3788/LOP240534 Cite this Article Set citation alerts
    Wen Guo, Hong Yang, Chang Liu. Semantic Segmentation of Dual-Source Remote Sensing Images Based on Gated Attention and Multiscale Residual Fusion[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837015 Copy Citation Text show less
    Overall structure diagram of STAM-SegNet
    Fig. 1. Overall structure diagram of STAM-SegNet
    AGCA module
    Fig. 2. AGCA module
    AGSA module
    Fig. 3. AGSA module
    MFRF module
    Fig. 4. MFRF module
    Overall technical flowchart of the experiment
    Fig. 5. Overall technical flowchart of the experiment
    Corresponding prediction effect diagram of comparative experimental results of different models on the Vaihingen dataset
    Fig. 6. Corresponding prediction effect diagram of comparative experimental results of different models on the Vaihingen dataset
    Corresponding prediction effect diagram of comparative experimental results of different models on the Potsdam dataset
    Fig. 7. Corresponding prediction effect diagram of comparative experimental results of different models on the Potsdam dataset
    ItemISPRS VaihingenISPRS Potsdam
    Input size512 × 512512 × 512
    Bands usedIRRG,DSMIRRG,DSM
    Batch size44
    Train number1617
    Val number45
    Test number1714
    Table 1. Dataset preprocessing and training configuration
    Baseline(Swin Transformer)AGCAAGSAMFRFMean F1 /%OA /%
    ×××88.5989.36
    ××89.0889.94
    ×89.4590.47
    89.6690.73
    Table 2. Comparison of evaluation results of ablation experiment on the Vaihingen test set
    MethodInputMean F1 /%OA /%
    BaselineIRRG88.0288.94
    AddIRRG+DSM88.7389.52
    ConcatIRRG+DSM88.8789.77
    AGCAIRRG+DSM89.6690.73
    Table 3. Comparative experimental results of dual-source data feature fusion on the Vaihingen dataset
    MethodBackboneF1-score /%Mean F1 /%OA /%GFLOPs /GBParams /106
    Impervios_surfaceBuildingLow_vegetableTreeCar
    DeepLabV3+Resnet10191.5294.0881.6788.6482.4787.6889.24193.9449.58
    UperNetResnet10191.4893.8981.2188.3486.1488.2189.07243.9770.60
    DANetResnet10192.1594.8083.1989.1786.5489.1790.01276.7366.45
    TransUNetResnet101+VIT92.0894.9183.0288.9886.5789.1189.95803.490.7
    Swin-UNetSwin Transformer92.4995.6483.1289.3186.3789.3890.44349.7282.89
    STAM-SegNetSwin Transformer92.5695.9683.8289.3486.6189.6690.73233.2160.47
    Table 4. Comparison results of multiple evaluation metrics for each model on the Vaihingen testset
    MethodBackboneF1-score /%Mean F1 /%OA /%GFLOPS /GBParams /106
    Impervios_surfaceBuildingLow_vegetableTreeCar
    DeepLabV3+Resnet10192.0895.6586.1687.1395.6591.3389.67193.9449.58
    UperNetResnet10192.5295.9886.3887.4595.8591.6490.01243.9770.60
    DANetResnet10192.6096.1686.5587.2695.9091.6990.10276.7366.45
    TransUNetResnet101+VIT92.3496.1086.2387.2996.0391.6090.07803.490.7
    Swin-UNetSwin Transformer92.9196.9187.1588.3795.9992.2790.72349.7282.89
    STAM-SegNetSwin Transformer93.5897.1387.5189.1996.3292.7591.23233.2160.47
    Table 5. Comparison results of multiple evaluation metrics for each model on the Potsdam testset
    Wen Guo, Hong Yang, Chang Liu. Semantic Segmentation of Dual-Source Remote Sensing Images Based on Gated Attention and Multiscale Residual Fusion[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837015
    Download Citation