Ming Chen, Xiangyun Xi, Yang Wang. Hyperspectral Image Classification Based on Residual Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210008

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 59, Issue 22, 2210008 (2022)

Fig. 1. Framework of GAN for hyperspectral image classification

Fig. 2. Sructure of residual unit

Fig. 3. Flowchart of hyperspectral image classification method using residual generative adversarial network

Fig. 4. Structure for residual block of generator

Fig. 5. Network structure of generator

Fig. 6. Structure for residual block of discriminator. (a) Block structure with convolution residuals; (b) Block structure without convolution residuals

Fig. 7. Network structure of discriminator

Fig. 8. Pavia University dataset. (a) Pseudo color image; (b) ground datum map

Fig. 9. Salinas dataset. (a) Pseudo color image; (b) ground datum map

Fig. 10. Indian Pines dataset. (a) Pseudo color image; (b) ground datum map

Fig. 11. Hyperspectral image classification result map of Indian Pines dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method

Fig. 12. Hyperspectral image classification result map of Pavia University dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method

Fig. 13. Hyperspectral image classification result map of Salinas dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
|
Table 1. Categories and number of Pavia University hyperspectral dataset
|
Table 2. Categories and number of Salinas hyperspectral dataset
|
Table 3. Categories and number of Indian Pines dataset
|
Table 4. Comparison of classification results of ablation experiments
|
Table 5. Comparison of classification accuracy of Indian Pines hyperspectral dataset
|
Table 6. Comparison of classification accuracy of Pavia University hyperspectral dataset
|
Table 7. Comparison of classification accuracy of Salinas hyperspectral dataset

Set citation alerts for the article
Please enter your email address