[1] ALY P, EL-KHESHEN A A, ABOU-GABAL H, et al. Structural investigation and measurement of the shielding effect of borosilicate glass containing PbO, SrO, and BaO against gamma irradiation[J]. J Phys Chem Solids, 2020, 145: 109521.
[3] PRAKASH A H D, MAHAMUDA S, ALZAHRANI J S, et al. Synthesis and characterization of B2O3–Bi2O3–SrO–Al2O3–PbO– Dy2O3 glass system: The role of Bi2O3/Dy2O3 on the optical, structural, and radiation absorption parameters[J]. Mater Res Bull, 2022, 155: 111952.
[4] CHO H S, OH J E, CHOI S I, et al. Performance evaluation of a gamma-ray imaging system for nondestructive testing of welded pipes[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2011, 652(1): 650–653.
[5] MOURA A E, DANTAS C C, NERY M S, et al. Non-destructive evaluation of weld discontinuity in steel tubes by gamma ray CT[J]. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater At, 2015, 349: 155–162.
[6] KANAGARAJ B, ANAND N, DIANA ANDRUSHIA A, et al. Recent developments of radiation shielding concrete in nuclear and radioactive waste storage facilities–A state of the art review[J]. Constr Build Mater, 2023, 404: 133260.
[7] ELBATAL H A, ABDELGHANY A M, GHONEIM N A, et al. Effect of 3d-transition metal doping on the shielding behavior of Barium borate glasses: A spectroscopic study[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2014, 133: 534–541.
[8] LEE C M, LEE Y H, LEE K J. Cracking effect on gamma-ray shielding performance in concrete structure[J]. Prog Nucl Energy, 2007, 49(4): 303–312.
[9] AKKURT I, AKYILDIRIM H, KARIP?IN F, et al. Chemical corrosion on gamma-ray attenuation properties of barite concrete[J]. J Saudi Chem Soc, 2012, 16(2): 199–202.
[10] SINGH S, KUMAR A, SINGH D, et al. Barium–borate–flyash glasses: As radiation shielding materials[J]. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater At, 2008, 266(1): 140–146.
[11] YILMAZ E, BALTAS H, KIRIS E, et al. Gamma ray and neutron shielding properties of some concrete materials[J]. Ann Nucl Energy, 2011, 38(10): 2204–2212.
[12] ZHOU Y C, CHEN X M, ZHAN Y J, et al. Research on the shielding performance of concrete in a 60Co irradiation environment[J]. Nucl Eng Des, 2023, 413: 112575.
[13] LUO L C, CHEN Z F, CAI S Y, et al. Mechanics, γ-ray shielding properties and acoustic emission characteristics of radiation shielding concrete exposed to elevated temperatures[J]. Case Stud Constr Mater, 2023, 19: e02572.
[16] YASAKA P, PATTANABOONMEE N, KIM H, et al. Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses[J]. Ann Nucl Energy, 2014, 68: 4–9.
[17] SALES B C, BOATNER L A. Optical, structural, and chemical characteristics of lead-indium phosphate and lead-scandium phosphate glasses[J]. J Am Ceram Soc, 1987, 70(9): 615–621.
[18] CULEA E, POP L, BOSCA M. Structural and physical characteristics of CeO2–GeO2–PbO glasses and glass ceramics[J]. J Alloys Compd, 2010, 505(2): 754–757.
[19] SINGH G P, KAUR S, KAUR P, et al. Modification in structural and optical properties of ZnO, CeO2 doped Al2O3–PbO–B2O3 glasses[J]. Phys B Condens Matter, 2012, 407(8): 1250–1255.
[22] SINGH G P, SINGH J, KAUR P, et al. Impact of TiO2 on radiation shielding competencies and structural, physical and optical properties of CeO2–PbO–B2O3 glasses[J]. J Alloys Compd, 2021, 885: 160939.
[23] ALOTAIBI B M, SAYYED M I, KUMAR A, et al. Optical and gamma-ray shielding effectiveness of a newly fabricated P2O5–CaO– Na2O–K2O–PbO glass system[J]. Prog Nucl Energy, 2021, 138: 103798.
[24] LIAN J, LI Q, CAO Z B, et al. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate[C]//AOPC 2017: Optoelectronics and Micro/Nano-Optics. Beijing, China. SPIE, 2017.
[25] AL-GHAMDI H, SAYYED M I, ELSAFI M, et al. An experimental study measuring the photon attenuation features of the P2O5–CaO– K2O–Na2O–PbO glass system[J]. Radiat Phys Chem, 2022, 200: 110153.
[26] SADEQ M S, SAYYED M I, ABDO M A, et al. Microstructure, electronic transitions and UV transparency of K2O–B2O3–Sm2O3 glass via PbO additives[J]. Opt Mater, 2023, 142: 113969.
[27] ALMUQRIN A H, KUMAR A, JECONG J F M, et al. Li2O–K2O–B2O3–PbO glass system: Optical and gamma-ray shielding investigations[J]. Optik, 2021, 247: 167792.
[28] MYTHILI N, ARULMOZHI K T, FAREED S S. A comparative study: On the properties of PbO–SiO2 glass systems synthesized via different routes[J]. Optik, 2016, 127(22): 10817–10824.
[29] ALOMAIRY S, AL-BURIAHI M S, ABDEL WAHAB E A, et al. Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system[J]. Ceram Int, 2021, 47(12): 17322–17330.
[30] ABDEL-WAHED M H, ABDOU S M, EL-BAYOUMI A S, et al. Structural, optical properties and γ-ray shielding parameters of PbO embedded Li2O borophosphate glass systems[J]. J Non Cryst Solids, 2020, 543: 120135.
[31] DE SOUSA MENESES D, MALKI M, ECHEGUT P. Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy[J]. J Non Cryst Solids, 2006, 352(8): 769–776.
[32] OUIS M A, ELBATAL F H. Shielding behavior of MoO3-doped lead borate glasses towards gamma irradiation assessed through collective optical, FTIR, and ESR spectral analysis[J]. Radiat Phys Chem, 2021(prepublish): 109537–.
[33] ELALAILY N A, ABOU-HUSSIEN E M, SAAD E A. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material[J]. Radiat Eff Defects Solids, 2016, 171(11–12): 840–854.
[34] ABO Z M, ALY S, EL SHAZLY R M, et al. Double effect of glass former B2O3 and intermediate Pb3O4 augmentation on the structural, thermal, and optical properties of borate network[J]. Optik, 2023, 272: 170368.
[35] ZAGRAI M, SUCIU R C, RADA S, et al. Structural and optical properties of Eu3+ ions in lead glass for photonic applications[J]. J Non Cryst Solids, 2021, 569: 120988.
[36] SADDEEK Y B, SEKHAR K C, ALBEDAH M A, et al. Unveiling the elastic properties of PbF2–MoO3–Bi2O3–B2O3 glass: A comprehensive analysis using FTIR and Raman spectroscopy[J]. Ceram Int, 2024, 50(2): 3719–3726.
[37] ZHENG K, ZHANG Z T, LIU L L, et al. Investigation of the viscosity and structural properties of CaO–SiO2–TiO2 slags[J]. Metall Mater Trans B, 2014, 45(4): 1389–1397.
[38] WANG Z J, SUN Y Q, SRIDHAR S, et al. Effect of Al2O3 on the viscosity and structure of CaO–SiO2–MgO–Al2O3–FetO slags[J]. Metall Mater Trans B, 2015, 46(2): 537–541.
[39] CHEN J W, LI A, ZHONG C, et al. Regulating the valence state of lead ions in lead aluminosilicate glass to improve the passivation performance for advanced chip packaging[J]. Appl Surf Sci, 2024, 651: 159208.
[40] LI M, WANG J, WANG J L, et al. Synthesis and Raman study on needlelike silicates in ancient Chinese Pb–Ba glass in Qin and Han dynasties[J]. J Raman Spectrosc, 2014, 45(8): 672–676.
[41] PENA R B, LAURENT V, DESCHAMPS T, et al. High-pressure plastic deformation of lead metasilicate glass accessed by Raman spectroscopy: Insights into the Qn distribution[J]. J Non Cryst Solids, 2021, 567: 120930.
[42] SAMPAIO D V, PICININ A, MOULTON B J A, et al. Raman scattering and molecular dynamics investigation of lead metasilicate glass and supercooled liquid structures[J]. J Non Cryst Solids, 2018, 499: 300–308.
[43] MAKISHIMA A, MACKENZIE J D. Direct calculation of Young’s moidulus of glass[J]. J Non Cryst Solids, 1973, 12(1): 35–45.
[44] GUO Y C, LI J Q, ZHANG Y, et al. High-entropy R2O3–Y2O3–TiO2–ZrO2–Al2O3 glasses with ultrahigh hardness, Young’s modulus, and indentation fracture toughness[J]. iScience, 2021, 24(7): 102735.
[45] HYUN S H, YEO T M, HA H M, et al. Structural evidence of mixed alkali effect for aluminoborosilicate glasses[J]. J Mol Liq, 2022, 347: 118319.
[46] NORITAKE F, NAITO S. Mechanism of mixed alkali effect in silicate glass/liquid: Pathway and network analysis[J]. J Non Cryst Solids, 2023, 610: 122321.
[47] WILKINSON C J, POTTER A R, WELCH R S, et al. Topological origins of the mixed alkali effect in glass[J]. J Phys Chem B, 2019, 123(34): 7482–7489.
[48] LAKSHMINARAYANA G, MEZA-ROCHA A N, SORIANO-ROMERO O, et al. Alkali/mixed alkali oxides having Nd3+: B2O3–TeO2–BaO–ZnO–NaF glasses: Perlustration of optical and luminescence traits for O-band amplification and near-infrared lasers[J]. J Non Cryst Solids, 2023, 619: 122573.
[49] PENG S, KE Z K, CAO X, et al. A novel type of borosilicate glass with excellent chemical stability and high ultraviolet transmission[J]. J Non Cryst Solids, 2020, 528: 119735.