• Study On Optical Communications
  • Vol. 49, Issue 4, 60 (2023)
Ling-fei SHEN1,2, Ting-wei FAN2, Gu-yu HU2, Jie WANG2,3..., Da-wei ZHANG1 and Tian-hua ZHOU2,*|Show fewer author(s)
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinses Academy of Sciences, Shanghai 201800, China
  • 3The Ministry of Education Key Laboratory of Electromagnetic Wave Information Science, Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.13756/j.gtxyj.2023.04.010 Cite this Article
    Ling-fei SHEN, Ting-wei FAN, Gu-yu HU, Jie WANG, Da-wei ZHANG, Tian-hua ZHOU. Research on Underwater Four-point Monocular Ranging based on Monte Carlo Simulation[J]. Study On Optical Communications, 2023, 49(4): 60 Copy Citation Text show less
    =0.58, Analog laser transmission at 3 m
    Fig. 1. =0.58, Analog laser transmission at 3 m
    Simulated laser spots
    Fig. 2. Simulated laser spots
    Pinhole camera model
    Fig. 3. Pinhole camera model
    Monocular ranging flowchart
    Fig. 4. Monocular ranging flowchart
    Image enhancement of underwater picture of laboratory pool
    Fig. 5. Image enhancement of underwater picture of laboratory pool
    Image enhancement of underwater picture of external field anechoic pool
    Fig. 6. Image enhancement of underwater picture of external field anechoic pool
    The ideal model for subpixel edge detection
    Fig. 7. The ideal model for subpixel edge detection
    Acquirement of spot centroid
    Fig. 8. Acquirement of spot centroid
    Fit contours with subpixel edges detection
    Fig. 9. Fit contours with subpixel edges detection
    Integrated system of underwater laser communication ranging and measurement
    Fig. 10. Integrated system of underwater laser communication ranging and measurement
    Trapezoidal optical beacon
    Fig. 11. Trapezoidal optical beacon
    The process of a monocular ranging procedure
    Fig. 12. The process of a monocular ranging procedure
    水质参数吸收系数散射系数衰减系数反照率
    I0.0460.002 050.0480.043
    IA0.0470.004 020.0510.079
    IB0.0600.084 000.1440.580
    II0.0760.227 000.3030.750
    III0.1040.452 000.5560.810
    Table 1. Optical parameters of seawater with green light 532 nm
    目标物尺寸/mm实际距离/mm检测距离/mm平均误差/mm相对误差(%)
    60976920565.7
    1 2821 208745.8
    1 4831 410734.9
    1 6831 600834.9
    1 8791 807723.8
    2 0862 012843.5
    Table 2. The monocular ranging algorithm for this article
    研发单位目标物目标物尺寸检测范围/m平均误差/mm相对误差
    杭州电子科技大学[5]三角灯-1.50~2.50126.0005.04%
    浙江大学[6]三角水下灯-0~3.90160.0004.00%以内
    江苏科技大学[7]十字光信标1 000 mm5.0091.600-
    10.00109.700-
    中国海洋大学[8]工件/接插件-0.10~0.5022.5001.00%~4.50%
    哈尔滨工程大学[21]L形光信标600 mm×400 mm0~4.5020.000以内-
    沈阳自动化研究所[22]8-LED圆形光信标2 014 mm0~5.799.432-
    波尔图大学[23]T形球信标300 mm×240 mm2.507.000-
    Table 3. Comparison of underwater monocular ranging algorithms
    Ling-fei SHEN, Ting-wei FAN, Gu-yu HU, Jie WANG, Da-wei ZHANG, Tian-hua ZHOU. Research on Underwater Four-point Monocular Ranging based on Monte Carlo Simulation[J]. Study On Optical Communications, 2023, 49(4): 60
    Download Citation