• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2215004 (2022)
Qingjiang Chen and Yali Xie*
Author Affiliations
  • School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • show less
    DOI: 10.3788/LOP202259.2215004 Cite this Article Set citation alerts
    Qingjiang Chen, Yali Xie. Underwater Image Enhancement Based on Dense Cascaded Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2215004 Copy Citation Text show less
    References

    [1] Mobley C D[M]. Light and water: radiative transfer in natural waters(1994).

    [2] Qian L J, Jin H H, Fan Z G et al. Underwater image restoration method suppressing interference of light source in field of view[J]. Acta Optica Sinica, 41, 1801001(2021).

    [3] Johnson-Roberson M, Bryson M, Friedman A et al. High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology[J]. Journal of Field Robotics, 34, 625-643(2017).

    [4] Song J. Design ideas of unmanned underwater launch test facility[J]. Journal of Unmanned Undersea Systems, 28, 220-224(2020).

    [5] Ancuti C O, Ancuti C, de Vleeschouwer C et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 27, 379-393(2018).

    [6] Reza A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology, 38, 35-44(2004).

    [7] Drews P L J, Jr, Nascimento E R, Botelho S S C et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Computer Graphics and Applications, 36, 24-35(2016).

    [8] Li C Y, Guo J C, Cong R M et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 25, 5664-5677(2016).

    [9] Menaker D, Treibitz T, Avidan S. Color restoration of underwater images[C](2017).

    [10] Henke B, Vahl M, Zhou Z L. Removing color cast of underwater images through non-constant color constancy hypothesis[C], 20-24(2013).

    [11] Ancuti C, Ancuti C O, Haber T et al. Enhancing underwater images and videos by fusion[C], 81-88(2012).

    [12] Wang Y, Wang D X, Yuan H C et al. Underwater image enhancement based on pyramid attention mechanism and generative adversarial network[J]. Laser & Optoelectronics Progress, 58, 1610006(2021).

    [13] Massot-Campos M, Oliver-Codina G. Underwater laser-based structured light system for one-shot 3D reconstruction[C], 1138-1141(2014).

    [14] Hossain M A, Karmaker A, Alam M S. A low latency MAC protocol with reduced handshaking for provisioning spatial fairness in underwater sensor network[J]. International Journal of Wireless Information Networks, 28, 147-161(2021).

    [15] Feng F, Wu G J, Wu Y F et al. Algorithm for underwater polarization imaging based on global estimation[J]. Acta Optica Sinica, 40, 2111002(2020).

    [16] Zhu J Y, Park T, Isola P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C], 2242-2251(2017).

    [17] Li C Y, Guo J C, Guo C L. Emerging from water: underwater image color correction based on weakly supervised color transfer[J]. IEEE Signal Processing Letters, 25, 323-327(2018).

    [18] Yang Q L, Zhou B H, Zheng W et al. Trajectory detection of small targets based on convolutional long short-term memory with attention mechanisms[J]. Optics and Precision Engineering, 28, 2535-2548(2020).

    [19] Yang Y, Liu L L, Zhang D X et al. Fast single image dehazing combined with adaptive haze estimation[J]. Optics and Precision Engineering, 27, 2263-2271(2019).

    [20] Wang K Y, Hu Y, Chen J et al. Underwater image restoration based on a parallel convolutional neural network[J]. Remote Sensing, 11, 1591(2019).

    [21] Chen Q J, Zhang X. Application of hybrid residual learning and guided filtering algorithm in image defogging[J]. Optics and Precision Engineering, 27, 2702-2712(2019).

    [22] Lin S, Liu S B. Underwater image enhancement based on multiscale generative adversarial network[J]. Laser & Optoelectronics Progress, 58, 1610017(2021).

    [23] Laina I, Rupprecht C, Belagiannis V et al. Deeper depth prediction with fully convolutional residual networks[C], 239-248(2016).

    [24] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).

    [25] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).

    [26] Li C, Guo C, Ren W et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 29, 4376-4389(2019).

    [27] Guo Y C, Li H Y, Zhuang P X. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 45, 862-870(2020).

    [28] Wu D, Yuan F, Cheng E. Underwater no-reference image quality assessment for display module of ROV[J]. Scientific Programming, 2020, 8856640(2020).