[1] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.
[2] Li F M, Wang D L, She Y C, et al. Controlling optical storage in semiconductor quantum dot electromagnetically induced transparency by phonon-assisted transition[J]. Laser & Optoelectronics Progress, 2017, 54(8): 082701.
[3] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced materials, 2010, 16(19): 1685-1706.
[4] Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030002.
[5] Fang Z Y, Cai J, Yan Z B, et al. Removing a wedge from a metallic nanodisk reveals a fano resonance[J]. Nano Letters, 2011, 11(10): 4475-4479.
[6] Zu S, Bao Y J, Fang Z Y. Planar plasmonic chiral nanostructures[J]. Nanoscale, 2016, 8(7): 3900-3905.
[7] Li H J, Wang L L, Liu J Q, et al. Investigation of the graphene based planar plasmonic filters[J]. Applied Physics Letters, 2013, 103(21): 211104.
[8] Wu T S, Liu Y M, Yu Z Y, et al. The sensing characteristics of plasmonic waveguide with a ring resonator[J]. Optics Express, 2014, 22(7): 7669-7677.
[9] Lu H, Liu X M, Mao D, et al. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators[J]. Optics Letters, 2012, 37(18): 3780-3782.
[10] Liu J G, Kai G Y, Xue L F, et al. A all-optical switching based on highly nolinear photonic crystal fiber Sagnac loop mirror[J]. Acta Physica Sinica, 2007, 56(2): 941-945.
[11] Lin R, Qian W C, Shang Y P, et al. Dual-channel all-optical switch based on plasmonic demultiplexer structure[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022401.
[12] Wu Y D. High transmission efficiency wavelength division multiplexer based on metal-insulator-metal plasmonic waveguides[J]. Journal of Lightwave Technology, 2014, 32(24): 4844-4848.
[13] Harris S E, Field J E, Imamolu A. Nonlinear optical processes using electromagnetically induced transparency[J]. Physical Review Letters, 1990, 64(10): 1107-1110.
[14] Boller K J, Imamolu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20): 2593-2596.
[15] Du Y J, Yang Z Y, Xie X T, et al. Influence of higher nonlinearity to optical solitons in electromagnetically induced transparency medium[J]. Acta Optica Sinica, 2015, 35(2): 0227002.
[16] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.
[17] Ma P P, Zhang J, Liu H H, et al. Plasmon induced transparency in the trimer of gold nanorods[J]. Acta Physica Sinica, 2016, 65(21): 217801.
[18] Artar A, Yanik A A, Altug H. Multispectral plasmon induced transparency in coupled meta-atoms[J]. Nano Letters, 2011, 11(4): 1685-1689.
[19] Chen J X, Wang P, Chen C C, et al. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators[J]. Optics Express, 2011, 19(7): 5970-5978.
[20] Zhu B Q, Tsang H K. High coupling efficiency silicon waveguide to metal-insulator-metal waveguide mode converter[J]. Journal of Lightwave Technology, 2016, 34(10): 2467-2472.
[21] Galvez F, del Valle J, Gomez A, et al. Plasmonic nanodevice with magnetic funcionalities: fabrication and characterization[J]. Optical Materials Express, 2016, 6(10): 3086-3096.
[22] Chen Z, Chen J J, Yu L, et al. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator[J]. Plasmonics, 2015, 10(1): 131-137.
[23] Qi J W, Chen Z Q, Chen J, et al. Independently tunable double Fano resonances in asymmetric MIM waveguide structure[J]. Optics Express, 2014, 22(12): 14688-14695.
[24] Li B X, Li H J, Zeng L L, et al. High-sensitivity sensing based on plasmon-induced transparency[J]. IEEE Photonics Journal, 2015, 7(5): 1-7.
[25] Yao M, Zhu K D, Yuan X Z, et al. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems[J]. Acta Physica Sinica, 2006, 55(4): 1769-1773.
[26] Shen X R. Theory study on surface plasmon-induced transparency and slow light effect in MIM waveguides[D]. Wuxi: Jiangnan University, 2017.
[27] Chen C Y, Un I W, Tai N H, et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance[J]. Optics Express, 2009, 17(17): 15372-15380.
[28] Liu G D, Zhai X, Wang L L, et al. Actively tunable Fano resonance based on a T-shaped graphene nanodimer[J]. Plasmonics, 2016, 11(2): 381-387.
[29] Lin Q, Zhai X, Wang L L, et al. A novel design of plasmon-induced absorption sensor[J]. Applied Physics Express, 2016, 9(6): 062002.
[30] Wen K H, Hu Y H, Zhou J Y, et al. Plasmonic-induced absorption in an end-coupled metal-insulator-metal resonator structure[J]. Optical Materials Express, 2017, 7(2): 433-443.
[31] Li H J, Zhai X, Wang L L. Realizing controlled plasmonically induced reflection in metal-insulator-metal plasmonic waveguide-resonator coupling systems[J]. Applied Physics Express, 2015, 8(9): 092201.
[32] Zand I, Mahigir A, Pakizeh T, et al. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators[J]. Optics Express, 2012, 20(7): 7516-7525.
[33] Chen Z, Song X K, Jiao R Z, et al. Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting[J]. IEEE Photonics Journal, 2015, 7(6): 4801408.
[34] Cheng H, Chen S Q, Yu P, et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips[J]. Applied Physics Letters, 2013, 103(20): 203112.
[35] Yang S L, Yu D M, Liu G D, et al. Perfect plasmon-induced absorption and its application for multi-switching in simple plasmonic system[J]. Plasmonics, 2018, 13(3): 1015-1020.
[36] Neo Y, Matsumoto T, Watanabe T, et al. Transformation from plasmon-induced transparence to -induced absorption through the control of coupling strength in metal-insulator-metal structure[J]. Optics Express, 2016, 24(23): 26201-26208.
[37] Hu J F, Liu J, Liu B, et al. Plasmon-induced absorption and its applications for fast light and sensing based on double-stub resonators[J]. Optik, 2018, 159: 254-260.