[1] Lemme M C, Akinwande D, Huyghebaert C and Stampfer C 2022 2D materials for future heterogeneous electronics Nat. Commun. 13 1392
[2] Maxey K et al 2022 300 mm MOCVD 2D CMOS materials for more (than) moore scaling Proc. 2022 IEEE Symp. on VLSI Technology and Circuits (VLSI Technology and Circuits) (IEEE) pp 419–20
[3] Mitchell S and Pérez-Ramírez J 2020 Single atom catalysis: a decade of stunning progress and the promise for a bright future Nat. Commun. 11 4302
[4] George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31
[5] Wang X W 2021 Atomic layer deposition of iron, cobalt, and nickel chalcogenides: progress and outlook Chem. Mater. 33 6251–68
[6] Meng X B, Wang X W, Geng D S, Ozgit-Akgun C, Schneider N and Elam J W 2017 Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology Mater. Horiz. 4 133–54
[7] Chen R, Li Y C, Cai J M, Cao K and Lee H B R 2020 Atomic level deposition to extend Moore’s law and beyond Int. J. Extrem. Manuf. 2 022002
[8] Zhang J M, Li Y C, Cao K and Chen R 2022 Advances in atomic layer deposition Nanomanuf. Metrol. 5 191–208
[9] Huang H B et al 2017 20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24% Sol. Energy Mater. Sol. Cells 161 14–30
[10] Cheng H, Huang Z G, Zhang L J, Liu Y, Song X M, Tong R, Zhong S H, Shi L X, Kong X Y and Shen W Z 2022 21.16%-efficiency p-type TOPCon solar cell with ALD-Al2O3/MoOx/Ag as a hole-selective passivating contact Sol. Energy 247 171–6
[11] Kim H, Chavan V D, Aziz J, Ko B, Lee J S, Rho J, Dongale T D, Choi K K and Kim D K 2022 Effect of ALD processes on physical and electrical properties of HfO2 dielectrics for the surface passivation of a CMOS image sensor application IEEE Access 10 68724–30
[12] HuQM,Wu CX,DongZ,ZhangGX,MaZH,WangXH,SunSHandXuJQ2022Direct confirmation of confinement effects by NiO confined in helical SnO2 nanocoils and its application in sensors J. Mater. Chem. A 10 2786–94
[13] Wa Q B, Xiong W, Zhao R, He Z Y, Chen Y and Wang X W 2019 Nanoscale Ni(OH)x films on carbon cloth prepared by atomic layer deposition and electrochemical activation for glucose sensing ACS Appl. Nano Mater. 2 4427–34
[14] Zhao R et al 2021 Surface passivation of organometal halide perovskites by atomic layer deposition: an investigation of the mechanism of efficient inverted planar solar cells Nanoscale Adv. 3 2305–15
[15] Zhang J, Zhang G X, Chen Z S, Dai H L, Hu Q M, Liao S J and Sun S H 2020 Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries Energy Storage Mater. 26 513–33
[16] Yu F, Du L, Zhang G X, Su F M, Wang W C and Sun S H 2020 Electrode engineering by atomic layer deposition for sodium-ion batteries: from traditional to advanced batteries Adv. Funct. Mater. 30 1906890
[17] Cheng N C, Shao Y Y, Liu J and Sun X L 2016 Electrocatalysts by atomic layer deposition for fuel cell applications Nano Energy 29 220–42
[18] Xiong W, Guo Z, Li H, Zhao R and Wang X W 2017 Rational bottom-up engineering of electrocatalysts by atomic layer deposition: a case study of FexCo1–xSy-based catalysts for electrochemical hydrogen evolution ACS Energy Lett. 2 2778–85
[19] Chen Z S, Zhang G X, Prakash J, Zheng Y and Sun S H 2019 Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide Adv. Energy Mater. 9 1900889
[20] Meng X B, Yang X Q and Sun X L 2012 Emerging applications of atomic layer deposition for lithium-ion battery studies Adv. Mater. 24 3589–615
[21] Sun Q, Lau K C, Geng D S and Meng X B 2018 Atomic and molecular layer deposition for superior lithium-sulfur batteries: strategies, performance, and mechanisms Batter. Supercaps 1 41–68
[22] Su Y T, Cui S H, Zhuo Z Q, Yang W L, Wang X W and Pan F 2015 Enhancing the high-voltage cycling performance of LiNi0.5Mn0.3Co0.2O2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al2O3 ACS Appl. Mater. Interfaces 7 25105–12
[23] Li J W, Xiang J R, Yi G, Tang Y T, Shao H C, Liu X, Shan B and Chen R 2022 Reduction of surface residual lithium compounds for single-crystal LiNi0.6Mn0.2Co0.2O2 via Al2O3 atomic layer deposition and post-annealing Coatings 12 84
[24] Skoog S A, Elam J W and Narayan R J 2013 Atomic layer deposition: medical and biological applications Int. Mater. Rev. 58 113–29
[25] Narayan R J, Monteiro-Riviere N A, Brigmon R L, Pellin M J and Elam J W 2009 Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: medical applications JOM 61 12–16
[26] Li J X, Chai G D and Wang X W 2023 Atomic layer deposition of thin films: from a chemistry perspective Int. J. Extrem. Manuf. 5 032003
[27] Zhao R, Guo Z and Wang X W 2018 Surface chemistry during atomic-layer deposition of nickel sulfide from nickel amidinate and H2S J. Phys. Chem. C 122 21514–20
[28] Zhao R, Xiao S, Yang S H and Wang X W 2019 Surface thermolytic behavior of nickel amidinate and its implication on the atomic layer deposition of nickel compounds Chem. Mater. 31 5172–80
[29] Wang X W, Dong L, Zhang J Y, Liu Y Q, Ye P D and Gordon R G 2013 Heteroepitaxy of La2O3 and La2–xYxO3 on GaAs (111)A by atomic layer deposition: achieving low interface trap density Nano Lett. 13 594–9
[30] Cao K, Cai J M and Chen R 2020 Inherently selective atomic layer deposition and applications Chem. Mater. 32 2195–207
[31] Cao K, Cai J M, Liu X and Chen R 2018 Review article: Catalysts design and synthesis via selective atomic layer deposition J. Vac. Sci. Technol. A 36 010801
[32] Miikkulainen V, Leskel. M, Ritala M and Puurunen R L 2013 Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends J. Appl. Phys. 113 021301
[33] LiJY, ZhangYQ,WangJL,YangH,ZhouXL,ChanMS,WangXW, LuLandZhangSD 2022 High-performance self-aligned top-gate amorphous InGaZnO TFTs with 4 nm-thick atomic-layer-deposited AlOx insulator IEEE Electron Device Lett. 43 729–32
[34] Mu.noz-Rojas D, Maindron T, Esteve A, Piallat F, Kools J C S and Decams J M 2019 Speeding up the unique assets of atomic layer deposition Mater. Today Chem. 12 96–120
[35] Zhao R, Gao Y H, Guo Z, Su Y T and Wang X W 2017 Interface energy alignment of atomic-layer-deposited VOx on pentacene: an in situ photoelectron spectroscopy investigation ACS Appl. Mater. Interfaces 9 1885–90
[36] Zhu J H, Zhao R, Shi J M, Wa Q B, Zhang M and Wang X W 2021 Metal exchange and diffusion during atomic layer deposition of cobalt and nickel sulfides Chem. Mater. 33 9403–12
[37] Li H, Zhao R, Zhu J H, Guo Z, Xiong W and Wang X W 2020 Organosulfur precursor for atomic layer deposition of high-quality metal sulfide films Chem. Mater. 32 8885–94
[38] Li Z S, Xiang J R, Liu X, Li X B, Li L J, Shan B and Chen R 2022 A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy Int. J. Extrem. Manuf. 4 025101
[39] Xiong W, Guo Q, Guo Z, Li H, Zhao R, Chen Q, Liu Z W and Wang X W 2018 Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution J. Mater. Chem. A 6 4297–303
[40] Gao Y H, Shao Y D, Yan L J, Li H, Su Y T, Meng H and Wang X W 2016 Metal/organic interfaces: efficient charge injection in organic field-effect transistors enabled by low-temperature atomic layer deposition of ultrathin VOx interlayer (Adv. Funct. Mater. 25/2016) Adv. Funct. Mater. 26 4615
[41] Zhou B Z, Liu M J, Wen Y W, Li Y and Chen R 2020 Atomic layer deposition for quantum dots based devices Opto-Electron. Adv. 3 190043
[42] Jiang C C, Cao K, Zhou B Z, Wen Y W, Shan B and Chen R 2020 Atomic scale composite oxides infiltration to quantum dot photodetector with ultralow dark current ACS Appl. Electron. Mater. 2 155–62