• Photonics Research
  • Vol. 13, Issue 4, 987 (2025)
Jingjun You1, Su Yi2,3,4,*, and Yuangang Deng1,5,*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
  • 2Institute of Fundamental Physics and Quantum Technology & School of Physics, Ningbo University, Ningbo 315211, China
  • 3Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
  • 4e-mail: yisu@nbu.edu.cn
  • 5e-mail: dengyg3@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.544164 Cite this Article Set citation alerts
    Jingjun You, Su Yi, Yuangang Deng, "Spin-momentum-mixing interactions with cavity-mediated supersolid in spinor condensates," Photonics Res. 13, 987 (2025) Copy Citation Text show less
    References

    [1] H. Ritsch, P. Domokos, F. Brennecke. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys., 85, 553(2013).

    [2] F. Mivehvar, F. Piazza, T. Donner. Cavity QED with quantum gases: New paradigms in many-body physics. Adv. Phys., 70, 1-153(2021).

    [3] N. Defenu, T. Donner, T. Macrì. Long-range interacting quantum systems. Rev. Mod. Phys., 95, 035002(2023).

    [4] I. Carusotto, C. Ciuti. Quantum fluids of light. Rev. Mod. Phys., 85, 299(2013).

    [5] T. Ozawa, H. M. Price, A. Amo. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [6] J. M. Raimond, M. Brune, S. Haroche. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 73, 565(2001).

    [7] K. Hammerer, A. S. Sørensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82, 1041(2010).

    [8] P. Forn-Díaz, L. Lamata, E. Rico. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys., 91, 025005(2019).

    [9] A. Reiserer, G. Rempe. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys., 87, 1379-1418(2015).

    [10] A. Reiserer. Colloquium: Cavity-enhanced quantum network nodes. Rev. Mod. Phys., 94, 041003(2022).

    [11] A. Blais, A. L. Grimsmo, S. M. Girvin. Circuit quantum electrodynamics. Rev. Mod. Phys., 93, 025005(2021).

    [12] M. Boninsegni, N. V. Prokof’ev. Colloquium: Supersolids: What and where are they?. Rev. Mod. Phys., 84, 759(2012).

    [13] E. Kim, M. H. W. Chan. Probable observation of a supersolid helium phase. Nature, 427, 225-227(2004).

    [14] S. Balibar. The enigma of supersolidity. Nature, 464, 176-182(2010).

    [15] D. Y. Kim, M. H. W. Chan. Absence of supersolidity in solid helium in porous Vycor glass. Phys. Rev. Lett., 109, 155301(2012).

    [16] G. V. Chester. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A, 2, 256-258(1970).

    [17] E. P. Gross. Unified theory of interacting bosons. Phys. Rev., 106, 161-162(1957).

    [18] J. Wang, H. Li, N. Xi. Plaquette singlet transition, magnetic barocaloric effect, and spin supersolidity in the Shastry-Sutherland model. Phys. Rev. Lett., 131, 116702(2023).

    [19] C. W. Myung, B. Hirshberg, M. Parrinello. Prediction of a supersolid phase in high-pressure deuterium. Phys. Rev. Lett., 128, 045301(2022).

    [20] J. S. Hofmann, E. Berg, D. Chowdhury. Superconductivity, charge density wave, and supersolidity in flat bands with a tunable quantum metric. Phys. Rev. Lett., 130, 226001(2023).

    [21] S. Conti, A. Perali, A. R. Hamilton. Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures. Phys. Rev. Lett., 130, 057001(2023).

    [22] Y.-H. Zhang, D. N. Sheng, A. Vishwanath. SU(4) chiral spin liquid, exciton supersolid, and electric detection in moiré bilayers. Phys. Rev. Lett., 127, 247701(2021).

    [23] Y.-J. Lin, K. Jiménez-García, I. B. Spielman. Spin-orbit-coupled Bose-Einstein condensates. Nature, 471, 83-86(2011).

    [24] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. Phys. Rev. Lett., 109, 095302(2012).

    [25] Z. Wu, L. Zhang, W. Sun. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates. Science, 354, 83-88(2016).

    [26] L. Huang, Z. Meng, P. Wang. Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases. Nat. Phys., 12, 540-544(2016).

    [27] K. T. Geier, G. I. Martone, P. Hauke. Dynamics of stripe patterns in supersolid spin-orbit-coupled Bose gases. Phys. Rev. Lett., 130, 156001(2023).

    [28] J.-R. Li, J. Lee, W. Huang. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature, 543, 91-94(2017).

    [29] Y. Deng, J. Cheng, H. Jing. Bose-Einstein condensates with cavity-mediated spin-orbit coupling. Phys. Rev. Lett., 112, 143007(2014).

    [30] L. Dong, L. Zhou, B. Wu. Cavity-assisted dynamical spin-orbit coupling in cold atoms. Phys. Rev. A, 89, 011602(2014).

    [31] S. Sinha, R. Nath, L. Santos. Trapped two-dimensional condensates with synthetic spin-orbit coupling. Phys. Rev. Lett., 107, 270401(2011).

    [32] Y. Deng, S. Yi. Self-ordered supersolid phase beyond Dicke superradiance in a ring cavity. Phys. Rev. Res., 5, 013002(2023).

    [33] R. M. Kroeze, Y. Guo, B. L. Lev. Dynamical spin-orbit coupling of a quantum gas. Phys. Rev. Lett., 123, 160404(2019).

    [34] T. Bland, E. Poli, C. Politi. Two-dimensional supersolid formation in dipolar condensates. Phys. Rev. Lett., 128, 195302(2022).

    [35] M. A. Norcia, E. Poli, C. Politi. Can angular oscillations probe superfluidity in dipolar supersolids?. Phys. Rev. Lett., 129, 040403(2022).

    [36] M. Guo, F. Böttcher, J. Hertkorn. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature, 574, 386-389(2019).

    [37] E. Poli, T. Bland, S. J. M. White. Glitches in rotating supersolids. Phys. Rev. Lett., 131, 223401(2023).

    [38] P. Karpov, F. Piazza. Light-induced quantum droplet phases of lattice bosons in multimode cavities. Phys. Rev. Lett., 128, 103201(2022).

    [39] I. Bloch, J. Dalibard, W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80, 885(2008).

    [40] A. Polkovnikov, K. Sengupta, A. Silva. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83, 863-883(2011).

    [41] J. Dalibard, F. Gerbier, G. Juzeliūnas. Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 83, 1523(2011).

    [42] N. R. Cooper, J. Dalibard, I. B. Spielman. Topological bands for ultracold atoms. Rev. Mod. Phys., 91, 015005(2019).

    [43] C. Gross, I. Bloch. Quantum simulations with ultracold atoms in optical lattices. Science, 357, 995-1001(2017).

    [44] J. Léonard, A. Morales, P. Zupancic. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature, 543, 87-90(2017).

    [45] J. Léonard, A. Morales, P. Zupancic. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science, 358, 1415-1418(2018).

    [46] S. C. Schuster, P. Wolf, S. Ostermann. Supersolid properties of a Bose-Einstein condensate in a ring resonator. Phys. Rev. Lett., 124, 143602(2020).

    [47] N. Masalaeva, H. Ritsch, F. Mivehvar. Tuning photon-mediated interactions in a multimode cavity: From supersolid to insulating droplets hosting phononic excitations. Phys. Rev. Lett., 131, 173401(2023).

    [48] Y. Guo, R. M. Kroeze, B. P. Marsh. An optical lattice with sound. Nature, 599, 211-215(2021).

    [49] F. Mivehvar, S. Ostermann, F. Piazza. Driven-dissipative supersolid in a ring cavity. Phys. Rev. Lett., 120, 123601(2018).

    [50] K. Gietka, F. Mivehvar, H. Ritsch. Supersolid-based gravimeter in a ring cavity. Phys. Rev. Lett., 122, 190801(2019).

    [51] S. Ostermann, W. Niedenzu, H. Ritsch. Unraveling the quantum nature of atomic self-ordering in a ring cavity. Phys. Rev. Lett., 124, 033601(2020).

    [52] L. Tanzi, S. Roccuzzo, E. Lucioni. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature, 574, 382-385(2019).

    [53] L. Tanzi, E. Lucioni, F. Famà. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett., 122, 130405(2019).

    [54] L. Chomaz, D. Petter, P. Ilzhöfer. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X, 9, 021012(2019).

    [55] F. Böttcher, J.-N. Schmidt, M. Wenzel. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X, 9, 011051(2019).

    [56] K. Baumann, C. Guerlin, F. Brennecke. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature, 464, 1301-1306(2010).

    [57] R. Mottl, F. Brennecke, K. Baumann. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions. Science, 336, 1570-1573(2012).

    [58] R. M. Kroeze, Y. Guo, V. D. Vaidya. Spinor self-ordering of a quantum gas in a cavity. Phys. Rev. Lett., 121, 163601(2018).

    [59] C. Luo, H. Zhang, V. P. Koh. Momentum-exchange interactions in a Bragg atom interferometer suppress Doppler dephasing. Science, 384, 551-556(2024).

    [60] C. K. Law, H. Pu, N. P. Bigelow. Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett., 81, 5257-5261(1998).

    [61] L. Salvi, N. Poli, V. Vuletić. Squeezing on momentum states for atom interferometry. Phys. Rev. Lett., 120, 033601(2018).

    [62] P. Colciaghi, Y. Li, P. Treutlein. Einstein-Podolsky-Rosen experiment with two Bose-Einstein condensates. Phys. Rev. X, 13, 021031(2023).

    [63] K. Lange, J. Peise, B. Lücke. Entanglement between two spatially separated atomic modes. Science, 360, 416-418(2018).

    [64] M. Fadel, T. Zibold, B. Décamps. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science, 360, 409-413(2018).

    [65] P. Kunkel, M. Prüfer, H. Strobel. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science, 360, 413-416(2018).

    [66] M. Martin, M. Bishof, M. Swallows. A quantum many-body spin system in an optical lattice clock. Science, 341, 632-636(2013).

    [67] J. G. Bohnet, B. C. Sawyer, J. W. Britton. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science, 352, 1297-1301(2016).

    [68] L. Christakis, J. S. Rosenberg, R. Raj. Probing site-resolved correlations in a spin system of ultracold molecules. Nature, 614, 64-69(2023).

    [69] J.-R. Li, K. Matsuda, C. Miller. Tunable itinerant spin dynamics with polar molecules. Nature, 614, 70-74(2023).

    [70] D. Nagy, G. Szirmai, P. Domokos. Self-organization of a Bose-Einstein condensate in an optical cavity. Eur. Phys. J. D, 48, 127-137(2008).

    [71] C. Maschler, I. B. Mekhov, H. Ritsch. Ultracold atoms in optical lattices generated by quantized light fields. Eur. Phys. J. D, 46, 545(2008).

    [72] C. Emary, T. Brandes. Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E, 67, 066203(2003).

    [73] A. Baksic, C. Ciuti. Controlling discrete and continuous symmetries in ‘superradiant’ phase transitions with circuit qed systems. Phys. Rev. Lett., 112, 173601(2014).

    [74] M. Soriente, T. Donner, R. Chitra. Dissipation-induced anomalous multicritical phenomena. Phys. Rev. Lett., 120, 183603(2018).

    [75] Z. Wu, C. Hu, T. Wang. Experimental quantum simulation of multicriticality in closed and open Rabi model. Phys. Rev. Lett., 133, 173602(2024).

    [76] M. A. Norcia, R. J. Lewis-Swan, J. R. Cline. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser. Science, 361, 259-262(2018).

    [77] J. A. Muniz, D. Barberena, R. J. Lewis-Swan. Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature, 580, 602-607(2020).

    [78] M. Kitagawa, M. Ueda. Squeezed spin states. Phys. Rev. A, 47, 5138-5143(1993).

    [79] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino. Dipolar physics: A review of experiments with magnetic quantum gases. Rep. Prog. Phys., 86, 026401(2022).

    [80] J. Ma, X. Wang, C.-P. Sun. Quantum spin squeezing. Phys. Rep., 509, 89-165(2011).

    [81] X.-Y. Luo, Y.-Q. Zou, L.-N. Wu. Deterministic entanglement generation from driving through quantum phase transitions. Science, 355, 620-623(2017).

    [82] N. Navon, A. L. Gaunt, R. P. Smith. Emergence of a turbulent cascade in a quantum gas. Nature, 539, 72-75(2016).

    [83] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych. Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett., 110, 200406(2013).

    [84] J. D. Wilson, S. B. Jäger, J. T. Reilly. Beyond one-axis twisting: Simultaneous spin-momentum squeezing. Phys. Rev. A, 106, 043711(2022).

    [85] F. Finger, R. Rosa-Medina, N. Reiter. Spin- and momentum-correlated atom pairs mediated by photon exchange and seeded by vacuum fluctuations. Phys. Rev. Lett., 132, 093402(2024).

    Jingjun You, Su Yi, Yuangang Deng, "Spin-momentum-mixing interactions with cavity-mediated supersolid in spinor condensates," Photonics Res. 13, 987 (2025)
    Download Citation