• Photonics Research
  • Vol. 11, Issue 11, 1838 (2023)
Yu-Xuan Ren1,2, Joshua Lamstein2,3, Chensong Zhang2,4, Claudio Conti5..., Demetrios N. Christodoulides6 and Zhigang Chen2,7,*|Show fewer author(s)
Author Affiliations
  • 1Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
  • 2Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132, USA
  • 3Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, California 94158, USA
  • 4Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 5Department of Physics, University Sapienza, I-00185 Roma, Italy
  • 6Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
  • 7TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
  • show less
    DOI: 10.1364/PRJ.496013 Cite this Article Set citation alerts
    Yu-Xuan Ren, Joshua Lamstein, Chensong Zhang, Claudio Conti, Demetrios N. Christodoulides, Zhigang Chen, "Biophotonic rogue waves in red blood cell suspensions," Photonics Res. 11, 1838 (2023) Copy Citation Text show less
    References

    [1] S. Birkholz, C. Brée, A. Demircan, G. Steinmeyer. Predictability of rogue events. Phys. Rev. Lett., 114, 213901(2015).

    [2] M. Tlidi, M. Taki. Rogue waves in nonlinear optics. Adv. Opt. Photon., 14, 87-147(2022).

    [3] N. Akhmediev, B. Kibler, F. Baronio, M. Belić, W.-P. Zhong, Y. Zhang, W. Chang, J. M. Soto-Crespo, P. Vouzas, P. Grelu, C. Lecaplain, K. Hammani, S. Rica, A. Picozzi, M. Tlidi, K. Panajotov, A. Mussot, A. Bendahmane, P. Szriftgiser, G. Genty, J. Dudley, A. Kudlinski, A. Demircan, U. Morgner, S. Amiraranashvili, C. Bree, G. Steinmeyer, C. Masoller, N. G. R. Broderick, A. F. J. Runge, M. Erkintalo, S. Residori, U. Bortolozzo, F. T. Arecchi, S. Wabnitz, C. G. Tiofack, S. Coulibaly, M. Taki. Roadmap on optical rogue waves and extreme events. J. Opt., 18, 063001(2016).

    [4] J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, F. Dias. Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys., 1, 675-689(2019).

    [5] M. Hopkin. Sea snapshots will map frequency of freak waves. Nature, 430, 492-493(2004).

    [6] K. Dusthe, H. E. Krogstad, P. Müller. Oceanic rogue waves. Annu. Rev. Fluid Mech., 40, 287-310(2008).

    [7] A. Chabchoub, N. P. Hoffmann, N. Akhmediev. Rogue wave observation in a water wave tank. Phys. Rev. Lett., 106, 204502(2011).

    [8] M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gramstad, P. A. E. M. Janssen, T. Kinoshita, J. Monbaliu, N. Mori, A. R. Osborne, M. Serio, C. T. Stansberg, H. Tamura, K. Trulsen. Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys. Rev. Lett., 102, 114502(2009).

    [9] K. Hasselmann. On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech., 12, 481-500(1962).

    [10] D. Pierangeli, F. Di Mei, C. Conti, A. J. Agranat, E. DelRe. Spatial rogue waves in photorefractive ferroelectrics. Phys. Rev. Lett., 115, 093901(2015).

    [11] N. Marsal, V. Caullet, D. Wolfersberger, M. Sciamanna. Spatial rogue waves in a photorefractive pattern-forming system. Opt. Lett., 39, 3690-3693(2014).

    [12] G. Marcucci, D. Pierangeli, A. J. Agranat, R.-K. Lee, E. DelRe, C. Conti. Topological control of extreme waves. Nat. Commun., 10, 5090(2019).

    [13] M. Shats, H. Punzmann, H. Xia. Capillary rogue waves. Phys. Rev. Lett., 104, 104503(2010).

    [14] A. Montina, U. Bortolozzo, S. Residori, F. T. Arecchi. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett., 103, 173901(2009).

    [15] A. Safari, R. Fickler, M. J. Padgett, R. W. Boyd. Generation of caustics and rogue waves from nonlinear instability. Phys. Rev. Lett., 119, 203901(2017).

    [16] D. R. Solli, C. Ropers, P. Koonath, B. Jalali. Optical rogue waves. Nature, 450, 1054-1057(2007).

    [17] Y. Zhou, Y.-X. Ren, J. Shi, K. K. Y. Wong. Breathing dissipative soliton explosions in a bidirectional ultrafast fiber laser. Photon. Res., 8, 1566-1572(2020).

    [18] Y. Du, Z. He, H. Zhang, Q. Gao, C. Zeng, D. Mao, J. Zhao. Origin of spectral rogue waves in incoherent optical wave packets. Phys. Rev. A, 106, 053509(2022).

    [19] Y. Zhou, Y.-X. Ren, J. Shi, H. Mao, K. K. Y. Wong. Buildup and dissociation dynamics of dissipative optical soliton molecules. Optica, 7, 965-972(2020).

    [20] F. Meng, C. Lapre, C. Billet, T. Sylvestre, J.-M. Merolla, C. Finot, S. K. Turitsyn, G. Genty, J. M. Dudley. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nat. Commun., 12, 5567(2021).

    [21] D. Rivas, A. Szameit, R. A. Vicencio. Rogue waves in disordered 1D photonic lattices. Sci. Rep., 10, 13064(2020).

    [22] A. N. Black, S. Choudhary, E. S. Arroyo-Rivera, H. Woodworth, R. W. Boyd. Suppression of nonlinear optical rogue wave formation using polarization-structured beams. Phys. Rev. Lett., 129, 133902(2022).

    [23] D. Kip, M. Soljacic, M. Segev, E. Eugenieva, D. N. Christodoulides. Modulation instability and pattern formation in spatially incoherent light beams. Science, 290, 495-498(2000).

    [24] N. N. Akhmediev, V. I. Korneev. Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys., 69, 1089-1093(1986).

    [25] N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz. Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A, 373, 2137-2145(2009).

    [26] C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. R. Leite, J. R. Tredicce. Deterministic optical rogue waves. Phys. Rev. Lett., 107, 053901(2011).

    [27] C. Kharif, E. Pelinovsky. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B., 22, 603-634(2003).

    [28] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley. The Peregrine soliton in nonlinear fibre optics. Nat. Phys., 6, 790-795(2010).

    [29] J. M. Dudley, F. Dias, M. Erkintalo, G. Genty. Instabilities, breathers and rogue waves in optics. Nat. Photonics, 8, 755-764(2014).

    [30] B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, J. M. Dudley. Observation of Kuznetsov-Ma soliton dynamics in optical fibre. Sci. Rep., 2, 463(2012).

    [31] M. Leonetti, C. Conti. Observation of three dimensional optical rogue waves through obstacles. Appl. Phys. Lett., 106, 254103(2015).

    [32] V. B. Efimov, A. N. Ganshin, G. V. Kolmakov, P. V. E. McClintock, L. P. Mezhov-Deglin. Rogue waves in superfluid helium. Eur. Phys. J. Spec. Top., 185, 181-193(2010).

    [33] R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, E. J. Heller. Freak waves in the linear regime: a microwave study. Phys. Rev. Lett., 104, 093901(2010).

    [34] C. Liu, R. E. C. van der Wel, N. Rotenberg, L. Kuipers, T. F. Krauss, A. Di Falco, A. Fratalocchi. Triggering extreme events at the nanoscale in photonic seas. Nat. Phys., 11, 358-363(2015).

    [35] F. T. Arecchi, U. Bortolozzo, A. Montina, S. Residori. Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys. Rev. Lett., 106, 153901(2011).

    [36] F. Fedele, J. Brennan, S. Ponce de León, J. Dudley, F. Dias. Real world ocean rogue waves explained without the modulational instability. Sci. Rep., 6, 27715(2016).

    [37] A. Mathis, L. Froehly, S. Toenger, F. Dias, G. Genty, J. M. Dudley. Caustics and rogue waves in an optical sea. Sci. Rep., 5, 12822(2015).

    [38] A. Chowdury, W. Chang, M. Battiato. From rogue wave solution to solitons. Phys. Rev. E, 107, 014212(2023).

    [39] D. Eeltink, H. Branger, C. Luneau, Y. He, A. Chabchoub, J. Kasparian, T. S. van den Bremer, T. P. Sapsis. Nonlinear wave evolution with data-driven breaking. Nat. Commun., 13, 2343(2022).

    [40] M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, G. Genty. Machine learning analysis of extreme events in optical fibre modulation instability. Nat. Commun., 9, 4923(2018).

    [41] G. Marcucci, D. Pierangeli, C. Conti. Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons. Phys. Rev. Lett., 125, 093901(2020).

    [42] K. G. Phillips, S. L. Jacques, O. J. T. McCarty. Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope. Phys. Rev. Lett., 109, 118105(2012).

    [43] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge. Marker-free phase nanoscopy. Nat. Photonics, 7, 113-117(2013).

    [44] A. Roggan, M. Friebel, K. Doerschel, A. Hahn, G. J. Mueller. Optical properties of circulating human blood in the wavelength range 400-2500 nm. J. Biomed. Opt., 4, 36-46(1999).

    [45] L. Miccio, P. Memmolo, F. Merola, P. A. Netti, P. Ferraro. Red blood cell as an adaptive optofluidic microlens. Nat. Commun., 6, 6502(2015).

    [46] P. J. Reece, E. M. Wright, K. Dholakia. Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter. Phys. Rev. Lett., 98, 203902(2007).

    [47] C. Conti, G. Ruocco, S. Trillo. Optical spatial solitons in soft matter. Phys. Rev. Lett., 95, 183902(2005).

    [48] A. Bezryadina, T. Hansson, R. Gautam, B. Wetzel, G. Siggins, A. Kalmbach, J. Lamstein, D. Gallardo, E. J. Carpenter, A. Ichimura, R. Morandotti, Z. Chen. Nonlinear self-action of light through biological suspensions. Phys. Rev. Lett., 119, 058101(2017).

    [49] R. Gautam, Y. Xiang, J. Lamstein, Y. Liang, A. Bezryadina, G. Liang, T. Hansson, B. Wetzel, D. Preece, A. White, M. Silverman, S. Kazarian, J. Xu, R. Morandotti, Z. Chen. Optical force-induced nonlinearity and self-guiding of light in human red blood cell suspensions. Light Sci. Appl., 8, 31(2019).

    [50] R. Gautam, A. Bezryadina, Y. Xiang, T. Hansson, Y. Liang, G. Liang, J. Lamstein, N. Perez, B. Wetzel, R. Morandotti, Z. Chen. Nonlinear optical response and self-trapping of light in biological suspensions. Adv. Phys. X, 5, 1778526(2020).

    [51] N. Perez, J. Chambers, Z. Chen, A. Bezryadina. Nonlinear self-trapping and guiding of light at different wavelengths with sheep blood. Opt. Lett., 46, 629-632(2021).

    [52] D. Pierangeli, G. Perini, V. Palmieri, I. Grecco, G. Friggeri, M. De Spirito, M. Papi, E. DelRe, C. Conti. Extreme transport of light in spheroids of tumor cells. Nat. Commun., 14, 4662(2023).

    [53] A. Armaroli, C. Conti, F. Biancalana. Rogue solitons in optical fibers: a dynamical process in a complex energy landscape?. Optica, 2, 497-504(2015).

    [54] Y.-X. Ren, J. Lamstein, T. S. Kelly, C. Zhang, Y. Sun, C. Conti, D. N. Christodoulides, Z. Chen. Rogue waves in red blood cell suspensions. Conference on Lasers and Electro-Optics, FM4F.1(2017).

    [55] Y.-X. Ren, T. S. Kelly, C. Zhang, H. Xu, Z. Chen. Soliton-mediated orientational ordering of gold nanorods and birefringence in plasmonic suspensions. Opt. Lett., 42, 627-630(2017).

    [56] T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. Christodoulides, Z. Chen. Guiding and nonlinear coupling of light in plasmonic nanosuspensions. Opt. Lett., 41, 3817-3820(2016).

    [57] N. Akhmediev, A. Ankiewicz, M. Taki. Waves that appear from nowhere and disappear without a trace. Phys. Lett. A, 373, 675-678(2009).

    [58] J. M. Higgins, D. T. Eddington, S. N. Bhatia, L. Mahadevan. Statistical dynamics of flowing red blood cells by morphological image processing. PLoS Comput. Biol., 5, e1000288(2009).

    [59] H. Martin, N. Y. Anna, S. Dietrich. A scattering phase function for blood with physiological haematocrit. Phys. Med. Biol., 46, N65-N69(2001).

    [60] Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011).

    [61] A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J., 61, 569-582(1992).

    [62] A. Ashkin, J. M. Dziedzic, P. W. Smith. Continuous-wave self-focusing and self-trapping of light in artificial Kerr media. Opt. Lett., 7, 276-278(1982).

    [63] A. J. Palmer. Nonlinear optics in aerosols. Opt. Lett., 5, 54-55(1980).

    [64] P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, S. Bielawski. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun., 7, 13136(2016).

    [65] A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, D. N. Christodoulides. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep., 542, 1-132(2014).

    [66] R. A. McPherson, N. Vajpayee, S. Graham, M. R. Pincus, S. Bem. Basic examination of blood and bone marrow. Henry’s Clinical Diagnosis and Management by Laboratory Methods, 509-535(2011).

    [67] Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 105, 13730-13735(2008).

    [68] P. Walczak, S. Randoux, P. Suret. Optical rogue waves in integrable turbulence. Phys. Rev. Lett., 114, 143903(2015).

    [69] J. M. Soto-Crespo, N. Devine, N. Akhmediev. Integrable turbulence and rogue waves: breathers or solitons?. Phys. Rev. Lett., 116, 103901(2016).

    [70] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F. T. Arecchi. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep., 528, 47-89(2013).

    Yu-Xuan Ren, Joshua Lamstein, Chensong Zhang, Claudio Conti, Demetrios N. Christodoulides, Zhigang Chen, "Biophotonic rogue waves in red blood cell suspensions," Photonics Res. 11, 1838 (2023)
    Download Citation