• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 4, 42006 (2023)
1, 1, 1, 1..., 2, 1, 1, 3, 3, 4,5 and 1,*|Show fewer author(s)
Author Affiliations
  • 1Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People’s Republic of China
  • 2College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
  • 3College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
  • 4School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China, People’s Republic of China
  • 5James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
  • show less
    DOI: 10.1088/2631-7990/acee2e Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Manufacturing of graphene based synaptic devices for optoelectronic applications[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42006 Copy Citation Text show less
    References

    [1] Sangwan V K and Hersam M C 2020 Neuromorphic nanoelectronic materials Nat. Nanotechnol. 15 517–28

    [2] ZhangFQ,LiCY, LiZY, DongLXandZhaoJ2023 Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications Microsyst. Nanoeng. 9 16

    [3] CaoGM,MengP, ChenJG,LiuHS,BianRJ,ZhuC, Liu F C and Liu Z 2021 2D material based synaptic devices for neuromorphic computing Adv. Funct. Mater. 31 2005443

    [4] Yu S M 2018 Neuro-inspired computing with emerging nonvolatile memorys Proc. IEEE 106 260–85

    [5] Zidan M A, Strachan J P and Lu W D 2018 The future of electronics based on memristive systems Nat. Electron. 1 22–29

    [6] ParkTJ et al 2023 Complex oxides for brain-inspired computing: a review Adv. Mater. 35 2203352

    [7] Mehonic A and Kenyon A J 2022 Brain-inspired computing needs a master plan Nature 604 255–60

    [8] BuYL,XuT, GengSYY, Fan SQ,LiQandSuJ2023 Ferroelectrics-electret synergetic organic artificial synapses with single-polarity driven dynamic reconfigurable modulation Adv. Funct. Mater. 33 2213741

    [9] Wang Y L, Cao M H, Bian J, Li Q and Su J 2022 Flexible ZnO nanosheet-based artificial synapses prepared by low-temperature process for high recognition accuracy neuromorphic computing Adv. Funct. Mater. 32 2209907

    [10] LeeM,LeeW, ChoiS,JoJW, KimJ,ParkSKandKimYH 2017 Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity Adv. Mater. 29 1700951

    [11] QinSC,WangFQ,LiuYJ,Wan Q,WangXR,XuYB, Shi Y, Wang X M and Zhang R 2017 A light-stimulated synaptic device based on graphene hybrid phototransistor 2D Mater. 4 035022

    [12] Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L and Huang J 2019 Recent advances in transistor-based artificial synapses Adv. Funct. Mater. 29 1903700

    [13] Shen Y C et al 2017 Deep learning with coherent nanophotonic circuits Nat. Photon. 11 441–6

    [14] Wang Y, Yin L, Huang W, Li Y Y, Huang S J, Zhu Y Y, Yang D R and Pi X D 2021 Optoelectronic synaptic devices for neuromorphic computing Adv. Intell. Syst. 3 2000099

    [15] Zhu X J, Wang Q W and Lu W D 2020 Memristor networks for real-time neural activity analysis Nat. Commun. 11 2439

    [16] HanX,XuZS,Wu WQ,LiuXH,Yan PGandPan CF 2020 Recent progress in optoelectronic synapses for artificial visual-perception system Small Struct. 1 2000029

    [17] PeiYF, Yan L,Wu ZH,LuJK,ZhaoJH,ChenJS,LiuQ and Yan X B 2021 Artificial visual perception nervous system based on low-dimensional material photoelectric memristors ACS Nano 15 17319–26

    [18] WangXT, CuiY, LiT, LeiM,LiJBandWeiZM2019 Recent advances in the functional 2D photonic and optoelectronic devices Adv. Opt. Mater. 7 1801274

    [19] ChuZM,ChuXB,ZhaoY, Ye QF, JiangJ,ZhangXWand You J B 2021 Emerging low-dimensional crystal structure of metal halide perovskite optoelectronic materials and devices Small Struct. 2 2000133

    [20] Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y and Duan X F 2012 Graphene: an emerging electronic material Adv. Mater. 24 5782–825

    [21] Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183–91

    [22] WangHM,WangHS,MaCX,ChenLX,JiangCX, Chen C, Xie X M, Li A P and Wang X R 2021 Graphene nanoribbons for quantum electronics Phys. Chem. Chem. Phys. 3 791–802

    [23] Zhang Z, Lin P, Liao Q L, Kang Z, Si H N and Zhang Y 2019 Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics Adv. Mater. 31 1806411

    [24] Gu Y W, Qiu Z J and Müllen K 2022 Nanographenes and graphene nanoribbons as multitalents of present and future materials science J. Am. Chem. Soc. 144 11499–524

    [25] Mishra N et al 2019 Wafer-scale synthesis of graphene on sapphire: toward fab-compatible graphene Small 15 1904906

    [26] Huang M, Deng B W, Dong F, Zhang L L, Zhang Z Y and Chen P 2021 Substrate engineering for CVD growth of single crystal graphene Small Methods 5 2001213

    [27] Schranghamer T F, Sharma M, Singh R and Das S 2021 Review and comparison of layer transfer methods for two-dimensional materials for emerging applications Chem. Soc. Rev. 50 11032–54

    [28] Wei T, Hauke F and Hirsch A 2021 Evolution of graphene patterning: from dimension regulation to molecular engineering Adv. Mater. 33 2104060

    [29] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9

    [30] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Two-dimensional gas of massless Dirac fermions in graphene Nature 438 197–200

    [31] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Giant intrinsic carrier mobilities in graphene and its bilayer Phys. Rev. Lett. 100 016602

    [32] ZhangBY, LiuT, MengB,LiXH,LiangGZ,HuXNand Wang Q J 2013 Broadband high photoresponse from pure monolayer graphene photodetector Nat. Commun. 4 1811

    [33] Liu X X, Wang Z, Watanabe K, Taniguchi T, Vafek O and Li J I A 2021 Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening Science 371 1261–5

    [34] Kumar R, Sahoo S, Joanni E, Singh R K, Maegawa K, Tan W K, Kawamura G, Kar K K and Matsuda A 2020 Heteroatom doped graphene engineering for energy storage and conversion Mater. Today 39 47–65

    [35] Yan J, Zhang Y B, Kim P and Pinczuk A 2007 Electric field effect tuning of electron-phonon coupling in graphene Phys. Rev. Lett. 98 166802

    [36] Wu JY, LinH,MossDJ,LohKPandJiaBH2023 Graphene oxide for photonics, electronics and optoelectronics Nat. Rev. Chem. 7 162–83

    [37] Rhodes D, Chae S H, Ribeiro-Palau R and Hone J 2019 Disorder in van der Waals heterostructures of 2D materials Nat. Mater. 18 541–9

    [38] JiaLN,Wu JY, ZhangYN,QuY, JiaBH,ChenZGand Moss D J 2022 Fabrication technologies for the on-chip integration of 2D materials Small Methods 6 2101435

    [39] Tsen A W, Brown L, Levendorf M P, Ghahari F, Huang P Y, Havener R W, Ruiz-Vargas C S, Muller D A, Kim P and Park J 2012 Tailoring electrical transport across grain boundaries in polycrystalline graphene Science 336 1143–6

    [40] Deng S K and Berry V 2016 Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications Mater. Today 19 197–212

    [41] Ghaffarkhah A, Hosseini E, Kamkar M, Sehat A A, Dordanihaghighi S, Allahbakhsh A, Kuur C and Arjmand M 2022 Synthesis, applications, and prospects of graphene quantum dots: a comprehensive review Small 18 2102683

    [42] Hernandez Y et al 2008 High-yield production of graphene by liquid-phase exfoliation of graphite Nat. Nanotechnol. 3 563–8

    [43] Deng B, Liu Z F and Peng H L 2019 Toward mass production of CVD graphene films Adv. Mater. 31 1800996

    [44] Norimatsu W and Kusunoki M 2014 Epitaxial graphene on SiC{0001}: advances and perspectives Phys. Chem. Chem. Phys. 16 3501–11

    [45] Agarwal V and Zetterlund P B 2021 Strategies for reduction of graphene oxide—a comprehensive review Chem. Eng. J. 405 127018

    [46] Huang Y, Sutter E, Shi N N, Zheng J B, Yang T Z, Englund D, Gao H J and Sutter P 2015 Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials ACS Nano 9 10612–20

    [47] Moon J Y et al 2020 Layer-engineered large-area exfoliation of graphene Sci. Adv. 6 eabc6601

    [48] Nguyen V L et al 2015 Seamless stitching of graphene domains on polished copper (111) foil Adv. Mater. 27 1376–82

    [49] Luo D et al 2019 Adlayer-free large-area single crystal graphene grown on a Cu(111) foil Adv. Mater. 31 1903615

    [50] Huang M et al 2020 Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil Nat. Nanotechnol. 15 289–95

    [51] LeeJH et al 2014 Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium Science 344 286–9

    [52] Tang S J et al 2015 Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride Nat. Commun. 6 6499

    [53] Tai L X, Zhu D M, Liu X, Yang T Y, Wang L, Wang R, Jiang S, Chen Z H, Xu Z M and Li X L 2018 Direct growth of graphene on silicon by metal-free chemical vapor deposition Nano-Micro Lett. 10 20

    [54] Wu TR et al 2016 Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys Nat. Mater. 15 43–47

    [55] Vlassiouk I V et al 2018 Evolutionary selection growth of two-dimensional materials on polycrystalline substrates Nat. Mater. 17 318–22

    [56] HaoYF et al 2013 The role of surface oxygen in the growth of large single-crystal graphene on copper Science 342 720–3

    [57] Mohsin A et al 2013 Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper ACS Nano 7 8924–31

    [58] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Transfer of large-area graphene films for high-performance transparent conductive electrodes Nano Lett. 9 4359–63

    [59] Reina A, Son H, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F and Kong J 2008 Transferring and identification of single-and few-layer graphene on arbitrary substrates J. Phys. Chem. C 112 17741–4

    [60] You R,LiuYQ,HaoYL,HanDD,ZhangYLandYou Z 2020 Laser fabrication of graphene-based flexible electronics Adv. Mater. 32 1901981

    [61] SongYQ,ZouWT, LuQ,LinLandLiuZF2021 Graphene transfer: paving the road for applications of chemical vapor deposition graphene Small 17 2007600

    [62] JeongHJ,KimHY, JeongSY, HanJT, BaegKJ, Hwang J Y and Lee G W 2014 Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly(methylmethacrylate) layers Carbon 66 612–8

    [63] ChenZY, GeXM,ZhangHR,ZhangYH,SuiY, Yu GH, Jin Z and Liu X Y 2016 High pressure-assisted transfer of ultraclean chemical vapor deposited graphene Appl. Phys. Lett. 108 132106

    [64] Park H, Lim C, Lee C J, Kang J, Kim J, Choi M and Park H 2018 Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer Nanotechnology 29 415303

    [65] LinYC,LuCC,YehCH,JinCH,Suenaga Kand Chiu P W 2012 Graphene annealing: how clean can it be? Nano Lett. 12 414–9

    [66] Capasso A et al 2014 Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene Appl. Phys. Lett. 105 113101

    [67] KimHH,KangB,SukJW, LiNN,KimKS,RuoffRS, Lee W H and Cho K 2015 Clean transfer of wafer-scale graphene via liquid phase removal of polycyclic aromatic hydrocarbons ACS Nano 9 4726–33

    [68] ZhangZK,DuJH,ZhangDD,SunHD,YinLC,MaLP, ChenJS, MaD G, ChengHM and RenW C 2017 Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes Nat. Commun. 8 14560

    [69] HsuCL,LinCT, HuangJH,ChuCW, WeiKHandLiLJ 2012 Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells ACS Nano 6 5031–9

    [70] Zaretski A V, Moetazedi H, Kong C, Sawyer E J, Savagatrup S, Valle E, O’connor T F, Printz A D and Lipomi D J 2015 Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates Nanotechnology 26 045301

    [71] SongJ,KamFY, PngRQ,SeahWL,ZhuoJM,LimGK, Ho P K H and Chua L L 2013 A general method for transferring graphene onto soft surfaces Nat. Nanotechnol. 8 356–62

    [72] Lupina G et al 2015 Residual metallic contamination of transferred chemical vapor deposited graphene ACS Nano 9 4776–85

    [73] Gorantla S, Bachmatiuk A, Hwang J, Alsalman H A, Kwak J Y, Seyller T, Eckert J, Spencer M G and Rümmeli M H 2014 A universal transfer route for graphene Nanoscale 6 889–96

    [74] Wang Y, Zheng Y, Xu X F, Dubuisson E, Bao Q L, Lu J and Loh K P 2011 Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst ACS Nano 5 9927–33

    [75] GaoLB et al 2012 Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum Nat. Commun. 3 699

    [76] Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K and Dekker C 2010 Wedging transfer of nanostructures Nano Lett. 10 1912–6

    [77] Chandrashekar B N, Deng B, Smitha A S, Chen Y B, Tan C W, ZhangHX, Peng H L and Liu Z F 2015 Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator Adv. Mater. 27 5210–6

    [78] Choi J K et al 2015 Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene ACS Nano 9 679–86

    [79] Liang X L et al 2011 Toward clean and crackless transfer of graphene ACS Nano 5 9144–53

    [80] KimHH,LeeSK,LeeSG,LeeEandChoK2016 Wetting-assisted crack-and wrinkle-free transfer of wafer-scale graphene onto arbitrary substrates over a wide range of surface energies Adv. Funct. Mater. 26 2070–7

    [81] Bae S et al 2010 Roll-to-roll production of 30-inch graphene films for transparent electrodes Nat. Nanotechnol. 5 574–8

    [82] MaLP, DongSC,ChenML,MaW, SunDM,GaoY, Ma T, Cheng H M and Ren W C 2018 UV-epoxy-enabled simultaneous intact transfer and highly efficient doping for roll-to-roll production of high-performance graphene films ACS Appl. Mater. Interfaces 10 40756–63

    [83] Jessen B S et al 2019 Lithographic band structure engineering of graphene Nat. Nanotechnol. 14 340–6

    [84] KimKS,ZhaoY, JangH,LeeSY, KimJM,KimKS, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 457 706–10

    [85] Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S and Kong J 2009 Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition Nano Lett. 9 30–35

    [86] K.nig M, Ruhl G, Batke J M and Lemme M C 2016 Self-organized growth of graphene nanomesh with increased gas sensitivity Nanoscale 8 15490–6

    [87] Chen Z L et al 2020 Direct growth of nanopatterned graphene on sapphire and its application in light emitting diodes Adv. Funct. Mater. 30 2001483

    [88] Zheng Y Q, Wang H, Hou S F and Xia D Y 2017 Lithographically defined graphene patterns Adv. Mater. Technol. 2 1600237

    [89] SuBW, ZhangXL,XinW, GuoHW, ZhangYZ,LiuZB and Tian J G 2021 Laser-assisted two dimensional material electronic and optoelectronic devices J. Mater. Chem. C 9 2599–619

    [90] Singh R S, Nalla V, Chen W, Wee A T S and Ji W 2011 Laser patterning of epitaxial graphene for Schottky junction photodetectors ACS Nano 5 5969–75

    [91] Sahin R, Simsek E and Akturk S 2014 Nanoscale patterning of graphene through femtosecond laser ablation Appl. Phys. Lett. 104 053118

    [92] Standing A J, Assali S, Haverkort J E M and Bakkers E P A M 2012 High yield transfer of ordered nanowire arrays into transparent flexible polymer films Nanotechnology 23 495305

    [93] Weisse J M, Kim D R, Lee C H and Zheng X L 2011 Vertical transfer of uniform silicon nanowire arrays via crack formation Nano Lett. 11 1300–5

    [94] Kim H, Song I, Park C, Son M, Hong M S, Kim Y, Kim J S, Shin H J, Baik J and Choi H C 2013 Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate ACS Nano 7 6575–82

    [95] Scott A et al 2011 The catalytic potential of high-κ dielectrics for graphene formation Appl. Phys. Lett. 98 073110

    [96] SunJY et al 2014 Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates J. Am. Chem. Soc. 136 6574–7

    [97] ZhangCH,ZhaoSL,JinCH,KohAL,ZhouY, XuWG, Li Q C, Xiong Q H, Peng H L and Liu Z F 2015 Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method Nat. Commun. 6 6519

    [98] Wang H P and Yu G 2016 Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication Adv. Mater. 28 4956–75

    [99] Liu Z, Song L, Zhao S Z, Huang J Q, Ma L L, Zhang J N, Lou J and Ajayan P M 2011 Direct growth of graphene/hexagonal boron nitride stacked layers Nano Lett. 11 2032–7

    [100] Pradhan B et al 2020 Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice Sci. Adv. 6 eaay5225

    [101] BianHY, GohYY, LiuYX,LingHF, XieLHandLiuXG 2021 Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing Adv. Mater. 33 2006469

    [102] IlyasN,WangJY, LiCM,LiDY, FuH,GuDE,JiangXD, Liu F C, Jiang Y D and Li W 2022 Nanostructured materials and architectures for advanced optoelectronic synaptic devices Adv. Funct. Mater. 32 2110976

    [103] Lee G, Baek J H, Ren F, Pearton S J, Lee G H and Kim J 2021 Artificial neuron and synapse devices based on 2D materials Small 17 2100640

    [104] Zhu X J, Lee S H and Lu W D 2019 Nanoionic resistive-switching devices Adv. Electron. Mater. 5 1900184

    [105] Yuan F, Zhang Z, Liu C R, Zhou F C, Yau H M, Lu W, Qiu X Y, Wong H S P, Dai J Y and Chai Y 2017 Real-time observation of the electrode-size-dependent evolution dynamics of the conducting filaments in a SiO2 layer ACS Nano 11 4097–104

    [106] Midya R et al 2017 Anatomy of Ag/hafnia-based selectors with 1010 nonlinearity Adv. Mater. 29 1604457

    [107] Shin K Y, Kim Y, Antolinez F V, Ha J S, Lee S S and Park J H 2016 Controllable formation of nanofilaments in resistive memories via tip-enhanced electric fields Adv. Electron. Mater. 2 1600233

    [108] Li H F, Geng S Y Y, Liu T, Cao M H and Su J 2023 Synaptic and gradual conductance switching behaviors in CeO2/Nb–SrTiO3 heterojunction memristors for electrocardiogram signal recognition ACS Appl. Mater. Interfaces 15 5456–65

    [109] Hua Q L et al 2020 Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics Nat. Commun. 11 6207

    [110] Goldfarb I, Miao F, Yang J J, Yi W, Strachan J P, Zhang M X, Pickett M D, Medeiros-Ribeiro G and Williams R S 2012 Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior Appl. Phys. A 107 1–11

    [111] Standley B, Bao W Z, Zhang H, Bruck J, Lau C N and Bockrath M 2008 Graphene-based atomic-scale switches Nano Lett. 8 3345–9

    [112] Sarwat S G, Gehring P, Rodriguez Hernandez G, Warner J H, Briggs G A D, Mol J A and Bhaskaran H 2017 Scaling limits of graphene nanoelectrodes Nano Lett. 17 3688–93

    [113] Lee S, Sohn J, Jiang Z Z, Chen H Y and Philip Wong H S 2015 Metal oxide-resistive memory using graphene-edge electrodes Nat. Commun. 6 8407

    [114] Zhao X L et al 2018 Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects Adv. Mater. 30 1705193

    [115] Lee J, Du C, Sun K, Kioupakis E and Lu W D 2016 Tuning ionic transport in memristive devices by graphene with engineered nanopores ACS Nano 10 3571–9

    [116] Chen X L, Zeng K L, Zhu X, Ding G L, Zou T, Zhang C, Zhou K, Zhou Y and Han S T 2019 Light driven active transition of switching modes in homogeneous oxides/graphene heterostructure Adv. Sci. 6 1900213

    [117] DingGL,HanST, Kuo CC,RoyVALandZhouY2023 Porphyrin-based metal–organic frameworks for neuromorphic electronics Small Struct. 4 2200150

    [118] Cho S B, Lee S and Chung Y C 2013 Water trapping at the graphene/Al2O3 interface Jpn. J. Appl. Phys. 52 06GD09

    [119] Schranghamer T F, Oberoi A and Das S 2020 Graphene memristive synapses for high precision neuromorphic computing Nat. Commun. 11 5474

    [120] Liu C S, Yan X, Song X F, Ding S J, Zhang D W and Zhou P 2018 A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications Nat. Nanotechnol. 13 404–10

    [121] Jang S, Hwang E and Cho J H 2014 Graphene nano-floating gate transistor memory on plastic Nanoscale 6 15286–92

    [122] Frydendahl C, Indukuri S R K C, Grajower M, Mazurski N, Shappir J and Levy U 2021 Graphene photo memtransistor based on CMOS flash memory technology with neuromorphic applications ACS Photonics 8 2659–65

    [123] Liu L et al 2021 Ultrafast non-volatile flash memory based on van der Waals heterostructures Nat. Nanotechnol. 16 874–81

    [124] ChenB,SunSH,Fan SQ,LiuXH,LiQandSuJ2022 Low-cost fabricated MgSnO electrolyte-gated synaptic transistor with dual modulation of excitation and inhibition Adv. Electron. Mater. 8 2200864

    [125] Zhang S et al 2022 The self-powered artificial synapse mechanotactile sensing system by integrating triboelectric plasma and gas-ionic-gated graphene transistor Nano Energy 91 106660

    [126] DaiSL,ChuYL,LiuDP, CaoF, Wu XH,ZhouJC, Zhou B L, Chen Y T and Huang J 2018 Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors Nat. Commun. 9 2737

    [127] Kireev D, Liu S, Jin H, Patrick Xiao T, Bennett C H, Akinwande D and Incorvia J A C 2022 Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing Nat. Commun. 13 4386

    [128] Chen Y Y, Zhou Y, Zhuge F W, Tian B B, Yan M G, Li Y, He Y H and Miao X S 2019 Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network npj 2D Mater. Appl. 3 31

    [129] Chen Y H et al 2019 Piezotronic graphene artificial sensory synapse Adv. Funct. Mater. 29 1900959

    [130] GengSYY, Fan SQ,LiHF, QiYS,AnCH,Wu EX,SuJ and Liu J 2023 An artificial neuromuscular system for bimodal human–machine interaction Adv. Funct. Mater. 33 2302345

    [131] Sharbati M T, Du Y H, Torres J, Ardolino N D, Yun M and Xiong F 2018 Low-power, electrochemically tunable graphene synapses for neuromorphic computing Adv. Mater. 30 1802353

    [132] Wang H, Laurenciu N C, Jiang Y and Cotofana S D 2020 Ultra-compact, entirely graphene-based nonlinear leaky integrate-and-fire spiking neuron 2020 IEEE Int. Symp. on Circuits and Systems (ISCAS) (IEEE)

    [133] Kou L J, Ye N, Waheed A, Auliya R Z, Wu C X, Ooi P C and Li F S 2023 High sensitivity and wide response range artificial synapse based on polyimide with embedded graphene quantum dots Sci. Rep. 13 8194

    [134] XuZW, LiFS,Wu CX,MaFM,ZhengYT, YangKY, Chen W, Hu H L, Guo T L and Kim T W 2019 Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing npg Asia Mater. 11 18

    [135] Liu X H, Wang F Y, Su J, Zhou Y and Ramakrishna S 2022 Bio-inspired 3D artificial neuromorphic circuits Adv. Funct. Mater. 32 2113050

    [136] TianH,MiWT, WangXF, ZhaoHM,XieQY, LiC, Li Y X, Yang Y and Ren T L 2015 Graphene dynamic synapse with modulatable plasticity Nano Lett. 15 8013–9

    [137] Pang J B et al 2023 Applications of graphene in five senses, nervous system, and artificial muscles ACS Sens. 8 482–514

    [138] Wan C J, Cai P Q, Wang M, Qian Y, Huang W and Chen X D 2020 Artificial sensory memory Adv. Mater. 32 1902434

    [139] Xia F N, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Two-dimensional material nanophotonics Nat. Photon. 8 899–907

    [140] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Photodetectors based on graphene, other two-dimensional materials and hybrid systems Nat. Nanotechnol. 9 780–93

    [141] Chen X, Chen B K, Jiang B, Gao T F, Shang G, Han S T, Kuo C C, Roy V A L and Zhou Y 2023 Nanowires for UV–vis–IR optoelectronic synaptic devices Adv. Funct. Mater. 33 2208807

    [142] LiuSL,HeXY, SuJL,CaoBW, RaoL,LiC,YangXH and Xin X J 2022 A light-stimulus flexible synaptic transistor based on ion-gel side-gated graphene for neuromorphic computing Adv. Photonics Res. 3 2200174

    [143] Hou Y X et al 2021 Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing ACS Nano 15 1497–508

    [144] Yang C M, Chen T C, Verma D, Li L J, Liu B, Chang W H and Lai C S 2020 Bidirectional all-optical synapses based on a 2D Bi2O2Se/graphene hybrid structure for multifunctional optoelectronics Adv. Funct. Mater. 30 2001598

    [145] Liang J R, Yu X, Qiu J, Wang M, Cheng C T, Huang B J, Zhang H J, Chen R, Pei W H and Chen H D 2023 All-optically controlled artificial synapses based on light-induced adsorption and desorption for neuromorphic vision ACS Appl. Mater. Interfaces 15 9584–92

    [146] Ahmed T et al 2019 Multifunctional optoelectronics via harnessing defects in layered black phosphorus Adv. Funct. Mater. 29 1901991

    [147] He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y and Guo X 2018 Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2 Small 14 1800079

    [148] Kwon K C et al 2020 In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device ACS Nano 14 7628–38

    [149] Mishra R K, Kim S, Guzman S J and Jonas P 2016 Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks Nat. Commun. 7 11552

    [150] Wang J X, Chen Y, Kong L A, Fu Y, Gao Y L and Sun J 2018 Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors Appl. Phys. Lett. 113 151101

    [151] HanC,HanXW, HanJY, HeM,PengY, LS,ZhangCY, Liu X C, Gou J and Wang J 2022 Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application Adv. Funct. Mater. 32 2113053

    [152] Mao J Y, Zhou L, Zhu X J, Zhou Y and Han S T 2019 Photonic memristor for future computing: a perspective Adv. Opt. Mater. 7 1900766

    [153] Zhai Y B, Zhou Y, Yang X Q, Wang F, Ye W B, Zhu X J, She D H, Lu W D and Han S T 2020 Near infrared neuromorphic computing via upconversion-mediated optogenetics Nano Energy 67 104262

    [154] Sun Y L, Lin Y X, Zubair A, Xie D and Palacios T 2021 WSe2/graphene heterojunction synaptic phototransistor with both electrically and optically tunable plasticity 2D Mater. 8 035034

    [155] Mizuno Y, Ito Y and Ueda K 2021 Optoelectronic synapses using vertically aligned graphene/diamond heterojunctions Carbon 182 669–76

    [156] ZhangZC,LiY, WangJJ,QiDH,Yao BW, Yu MX, Chen X D and Lu T B 2021 Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems Nano Res. 14 4591–600

    [157] ChenYB,KangY, HaoH,XieXN,ZengJW, XuT, LiC, Tan Y L and Fang L 2023 All two-dimensional integration-type optoelectronic synapse mimicking visual attention mechanism for multi-target recognition Adv. Funct. Mater. 33 2209781

    [158] LiRZ,DongYB,QianFS,XieYY, ChenX,ZhangQM, Yue Z J and Gu M 2023 CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning PhotoniX 4 4

    [159] Martinez-Martinez R, Islam M M, Krishnaprasad A and Roy T 2022 Graphene–oxide interface for optoelectronic synapse application Sci. Rep. 12 5880

    [160] Yu J R, Yang X X, Gao G Y, Xiong Y, Wang Y, Zhang Q M, Yue Z J, Gu M, Sun Q and Wang Z L 2021 Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure Sci. Adv. 7 eabd9117

    [161] Sun Q J et al 2021 Scalable fabrication of hierarchically structured graphite/polydimethylsiloxane composite films for large-area triboelectric nanogenerators and self-powered tactile sensing Nano Energy 80 105521

    [162] CaoXL,XiongY, SunJ,ZhuXX,SunQJandWangZL 2021 Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence Adv. Funct. Mater. 31 2102983

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Manufacturing of graphene based synaptic devices for optoelectronic applications[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42006
    Download Citation