[1] Zhong T, Kindem J M, Bartholomew J G et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval[J]. Science, 357, 1392-1395(2017).
[2] Wang L G, Zhou H P, Hu J N et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells[J]. Science, 363, 265-270(2019).
[3] Serrano D, Kuppusamy S K, Heinrich B et al. Ultra-narrow optical linewidths in rare-earth molecular crystals[J]. Nature, 603, 241-246(2022).
[4] Ou X Y, Qin X, Huang B L et al. High-resolution X-ray luminescence extension imaging[J]. Nature, 590, 410-415(2021).
[5] Liu Y J, Lu Y Q, Yang X S et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 543, 229-233(2017).
[6] Lee C, Xu E Z, Liu Y W et al. Giant nonlinear optical responses from photon-avalanching nanoparticles[J]. Nature, 589, 230-235(2021).
[7] Kindem J M, Ruskuc A, Bartholomew J G et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity[J]. Nature, 580, 201-204(2020).
[8] Han S Y, Deng R R, Gu Q F et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright[J]. Nature, 587, 594-599(2020).
[9] Fernandez-Bravo A, Yao K Y, Barnard E S et al. Continuous-wave upconverting nanoparticle microlasers[J]. Nature Nanotechnology, 13, 572-577(2018).
[10] Wang H, Wang H Y, He L et al. Progress in research and application of new optical functional rare earth complexes[J]. Chinese Journal of Luminescence, 43, 1509-1523(2022).
[11] Zheng W, Huang P, Tu D T et al. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection[J]. Chemical Society Reviews, 44, 1379-1415(2015).
[12] Zheng B Z, Fan J Y, Chen B et al. Rare-earth doping in nanostructured inorganic materials[J]. Chemical Reviews, 122, 5519-5603(2022).
[13] Zeng Z C, Xu Y S, Zhang Z S et al. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications[J]. Chemical Society Reviews, 49, 1109-1143(2020).
[14] Qin X, Liu X W, Huang W et al. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects[J]. Chemical Reviews, 117, 4488-4527(2017).
[15] Marin R, Jaque D. Doping lanthanide ions in colloidal semiconductor nanocrystals for brighter photoluminescence[J]. Chemical Reviews, 121, 1425-1462(2021).
[16] Zhou J J, Chizhik A I, Chu S et al. Single-particle spectroscopy for functional nanomaterials[J]. Nature, 579, 41-50(2020).
[17] Zhou J J, Chen G X, Wu E et al. Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod[J]. Nano Letters, 13, 2241-2246(2013).
[18] Wei S Q, Shang X Y, Huang P et al. Polarized upconversion luminescence from a single LiLuF4∶Yb3+/Er3+ microcrystal for orientation tracking[J]. Science China Materials, 65, 220-228(2022).
[19] Rodríguez-Sevilla P, Labrador-Páez L, Wawrzyńczyk D et al. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy[J]. Nanoscale, 8, 300-308(2016).
[20] Lü Z Y, Dong H, Yang X F et al. Highly polarized upconversion emissions from lanthanide-doped LiYF4 crystals as spatial orientation indicators[J]. The Journal of Physical Chemistry Letters, 12, 11288-11294(2021).
[21] Kumar A, Kim J, Lahlil K et al. Optical trapping and orientation-resolved spectroscopy of europium-doped nanorods[J]. Journal of Physics: Photonics, 2, 025007(2020).
[22] Kumar A, Asadollahbaik A, Kim J et al. Emission spectroscopy of NaYF4∶Eu nanorods optically trapped by Fresnel lens fibers[J]. Photonics Research, 10, 332-339(2022).
[23] Green K K, Wirth J, Lim S F. Nanoplasmonic upconverting nanoparticles as orientation sensors for single particle microscopy[J]. Scientific Reports, 7, 762(2017).
[24] Chacon R, Leray A, Kim J et al. Measuring the magnetic dipole transition of single nanorods by spectroscopy and Fourier microscopy[J]. Physical Review Applied, 14, 054010(2020).
[25] Li P, Li F, Zhang X Y et al. Orthogonally polarized luminescence of single bismuth phosphate microcrystal doped with europium[J]. Advanced Optical Materials, 8, 2000583(2020).
[26] Yang D D, Dong G P, Qiu J R. Light polarization characteristics of rare earth ions-doped materials: a review[J]. Laser & Optoelectronics Progress, 58, 1516017(2021).
[27] Deng Z Y, Yang X H, Zhang J W et al. Photophysical study on rare earth upconversion luminescent micro-nano materials[J]. Chinese Journal of Lasers, 50, 0113005(2023).
[28] Li P, Guo Y X, Liu A et al. Deterministic relation between optical polarization and lattice symmetry revealed in ion-doped single microcrystals[J]. ACS Nano, 16, 9535-9545(2022).
[29] Kim J, Chacón R, Wang Z J et al. Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants[J]. Nature Communications, 12, 1943(2021).
[30] Deng K R, Huang X, Liu Y L et al. Supercrystallographic reconstruction of 3D nanorod assembly with collectively anisotropic upconversion fluorescence[J]. Nano Letters, 20, 7367-7374(2020).
[31] Kim J, Lahlil K, Gacoin T et al. Measuring the order parameter of vertically aligned nanorod assemblies[J]. Nanoscale, 13, 7630-7637(2021).
[32] Kim J, Michelin S, Hilbers M et al. Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography[J]. Nature Nanotechnology, 12, 914-919(2017).
[33] Blanc J, Ross D L. Polarized absorption and emission in an octacoordinate chelate of Eu3+[J]. The Journal of Chemical Physics, 43, 1286-1289(1965).
[34] Brecher C. Europium in the ultraphosphate lattice: polarized spectra and structure of EuP5O14[J]. The Journal of Chemical Physics, 61, 2297-2315(1974).
[35] Brecher C, Samelson H, Lempicki A et al. Polarized spectra and crystal-field parameters of Eu+3 in YVO4[J]. Physical Review, 155, 178-187(1967).
[36] Brecher C, Samelson H, Riley R et al. Polarized spectra and crystal-field parameters of Eu3+ in YPO4[J]. The Journal of Chemical Physics, 49, 3303-3311(1968).
[37] Sayre E V, Freed S. Absorption spectrum and quantum states of the praseodymium ion. II. anhydrous praseodymium fluoride in films[J]. The Journal of Chemical Physics, 23, 2066-2068(1955).
[38] Sayre E V, Freed S. Spectra and quantum states of the europic ion in crystals. I. absorption spectrum of anhydrous europic chloride[J]. The Journal of Chemical Physics, 24, 1211-1212(1956).
[39] Sayre E V, Freed S. Spectra and quantum states of the europic ion in crystals. II. fluorescence and absorption spectra of single crystals of europic ethylsulfate nonahydrate[J]. The Journal of Chemical Physics, 24, 1213-1219(1956).
[40] Sayre E V, Sancier K M, Freed S. Absorption spectrum and quantum states of the praseodymium ion. I. single crystals of praseodymium chloride[J]. The Journal of Chemical Physics, 23, 2060-2065(1955).
[41] Görller-Walrand C, Binnemans K. Rationalization of crystal-field parametrization[J]. Handbook on the Physics and Chemistry of Rare Earths, 23, 121-283(1996).
[42] Zhang Y H, Huang L, Liu X G. Unraveling epitaxial habits in the NaLnF4 system for color multiplexing at the single-particle level[J]. Angewandte Chemie, 128, 5812-5816(2016).
[43] Li P, Yuan T L, Li F et al. Phosphate ion-driven BiPO4∶Eu phase transition[J]. The Journal of Physical Chemistry C, 123, 4424-4432(2019).
[44] Tu D T, Liu Y S, Zhu H M et al. Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals[J]. Angewandte Chemie International Edition, 52, 1128-1133(2013).
[45] Mishra S K, Gupta M K, Ningthoujam R S et al. Presence of water at elevated temperatures, structural transition, and thermal expansion behavior in LaPO4∶Eu[J]. Physical Review Materials, 2, 126003(2018).
[46] Liang F, He C, Lu D Z et al. Multiphonon-assisted lasing beyond the fluorescence spectrum[J]. Nature Physics, 18, 1312-1316(2022).
[47] Li Z H, Hudry D, Heid R et al. Phonon density of states in lanthanide-based nanocrystals[J]. Physical Review B, 102, 165409(2020).