• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 1, 15005 (2023)
1, 1,*, 1, 2..., 3, 3, 4, 5, 1, 1, 1, 3, 3, 1, 1, 6, 4, 7, 8,9 and 1|Show fewer author(s)
Author Affiliations
  • 1Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
  • 2School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518000, People’s Republic of China
  • 3Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, People’s Republic of China
  • 4Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
  • 5Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
  • 6Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, People’s Republic of China
  • 7Department of Applied Physics, The HongKong Polytechnic University, Hong Kong, People’s Republic of China
  • 8Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
  • 9Unité Facultaire d’Anatomie et de Morphologie (UFAM), CUMRL, University of Lausanne, 1005 Lausanne, Switzerland
  • show less
    DOI: 10.1088/2631-7990/acb741 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. 3D printed fiber-optic nanomechanical bioprobe[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 15005 Copy Citation Text show less
    References

    [1] Huang Q et al 2017 Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon-dielectric interactions Nat. Photon. 11 352–5

    [2] Martínez-Martín D, Fl.schner G, Gaub B, Martin S, Newton R, Beerli C, Mercer J, Gerber C and Müller D J 2017 Inertial picobalance reveals fast mass fluctuations in mammalian cells Nature 550 500–5

    [3] Neuman K C and Nagy A 2008 Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy Nat. Methods 5 491–505

    [4] Sirbuly D J, Friddle R W and Villanueva J 2015 Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it? Rep. Prog. Phys. 78 024101

    [5] Yang X, Zhang Q L, Zheng Y, Liu X C, Politis D, Fakir O E and Wang L L 2021 Investigation of the friction coefficient evolution and lubricant breakdown behaviour of AA7075 aluminium alloy forming processes at elevated temperatures Int. J. Extreme Manuf. 3 025002

    [6] Conrad H, Schenk H, Kaiser B, Langa S, Gaudet M, Schimmanz K, Stolz M and Lenz M 2015 A small-gap electrostatic micro-actuator for large deflections Nat. Commun. 6 10078

    [7] GuoHC,Tan YJ,ChenG,WangZF, SusantoGJ,SeeHH, Yang Z J, Lim Z W, Yang L and Tee B C K 2020 Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins Nat. Commun. 11 5747

    [8] Zhu Q D, Vliet K, Holten-Andersen N and Miserez A 2019 A double-layer mechanochromic hydrogel with multidirectional force sensing and encryption capability Adv. Funct. Mater. 29 1808191

    [9] Surjadi J U, Feng X B, Zhou W Z and Lu Y 2021 Optimizing film thickness to delay strut fracture in high-entropy alloy composite microlattices Int. J. Extreme Manuf. 3 025101

    [10] Crick S L and Yin F C P 2007 Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point Biomech. Model. Mechanobiol. 6 199–210

    [11] Gupta S, Carrillo F, Li C, Pruitt L and Puttlitz C 2007 Adhesive forces significantly affect elastic modulus determination of soft polymeric materials in nanoindentation Mater. Lett. 61 448–51

    [12] Garcia-Manyes S, Domènech `O, Sanz F, Montero M T and Hernandez-Borrell J 2007 Atomic force microscopy and force spectroscopy study of Langmuir–Blodgett films formed by heteroacid phospholipids of biological interest Biochim. Biophys. Acta 1768 1190–8

    [13] Huang S and Ingber D E 2005 Cell tension, matrix mechanics, and cancer development Cancer Cell 8 175–6

    [14] Discher D E, Janmey P and Wang Y L 2005 Tissue cells feel and respond to the stiffness of their substrate Science 310 1139–43

    [15] Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677–89

    [16] Stolz M et al 2009 Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy Nat. Nanotechnol. 4 186–92

    [17] Chavan D, van de Watering T C, Gruca G, Rector J H, Heeck K, Slaman M and Iannuzzi D 2012 Ferrule-top nanoindenter: an optomechanical fiber sensor for nanoindentation Rev. Sci. Instrum. 83 115110

    [18] Galluzzi M, Tang G L, Biswas C S, Zhao J L, Chen S G and Stadler F J 2018 Atomic force microscopy methodology and AFMech Suite software for nanomechanics on heterogeneous soft materials Nat. Commun. 9 3584

    [19] Kurland N E, Drira Z and Yadavalli V K 2012 Measurement of nanomechanical properties of biomolecules using atomic force microscopy Micron 43 116–28

    [20] SunLD et al 2020 3D-printed cellular tips for tuning fork atomic force microscopy in shear mode Nat. Commun. 11 5732

    [21] Eichelsdoerfer D J, Brown K A, Boya R, Shim W and Mirkin C A 2013 Tuning the spring constant of cantilever-free tip arrays Nano Lett. 13 664–7

    [22] Cao W H, Alsharif N, Huang Z J, White A E, Wang Y H and Brown K A 2021 Massively parallel cantilever-free atomic force microscopy Nat. Commun. 12 393

    [23] Gissibl T, Thiele S, Herkommer A and Giessen H 2016 Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres Nat. Commun. 7 11763

    [24] Gissibl T, Thiele S, Herkommer A and Giessen H 2016 Two-photon direct laser writing of ultracompact multi-lens objectives Nat. Photon. 10 554–60

    [25] Wang M H et al 2021 Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications Int. J. Extreme Manuf. 3 025401

    [26] Huang J Q et al 2020 Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors Nat. Energy 5 674–83

    [27] ZouMQ et al 2021 Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements Light Sci. Appl. 10 171

    [28] Alsharif N, Burkatovsky A, Lissandrello C, Jones K M, White A E and Brown K A 2018 Design and realization of 3D printed AFM probes Small 14 1800162

    [29] Dietrich P I, G.ring G, Trappen M, Blaicher M, Freude W, Schimmel T, H.lscher H and Koos C 2020 3D-printed scanning-probe microscopes with integrated optical actuation and read-out Small 16 1904695

    [30] Longo G, Alonso-Sarduy L, Rio L M, Bizzini A, Trampuz A, Notz J, Dietler G and Kasas S 2013 Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors Nat. Nanotechnol. 8 522–6

    [31] Hou X, Li J Y, Li Y Z and Tian Y 2022 Intermolecular and surface forces in atomic-scale manufacturing Int. J. Extreme Manuf. 4 022002

    [32] Dufr.ene Y F, Martínez-Martín D, Medalsy I, Alsteens D and Müller D J 2013 Multiparametric imaging of biological systems by force-distance curve-based AFM Nat. Methods 10 847–54

    [33] Dietrich P I et al 2018 In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration Nat. Photon. 12 241–7

    [34] Nair P S, Trisno J, Wang H T and Yang J K W 2021 3D printed fiber sockets for plug and play micro-optics Int. J. Extreme Manuf. 3 015301

    [35] Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature 412 697–8

    [36] Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere N A, Doraiswamy A and Narayan R J 2007 Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery Int. J. Appl. Ceram. Technol. 4 22–29

    [37] Stassi S, Cooperstein I, Tortello M, Pirri C F, Magdassi S and Ricciardi C 2021 Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators Nat. Commun. 12 6080

    [38] Gautier H O B, Thompson A J, Achouri S, Koser D E, Holtzmann K, Moeendarbary E and Franze K 2015 Atomic force microscopy-based force measurements on animal cells and tissues Methods Cell Biol. 125 211–35

    [39] Morita K, Sugimoto Y, Sasagawa Y, Abe M and Morita S 2010 Small-amplitude dynamic force microscopy using a quartz cantilever with an optical interferometer Nanotechnology 21 305704

    [40] Butt H J, Cappella B and Kappl M 2005 Force measurements with the atomic force microscope: technique, interpretation and applications Surf. Sci. Rep. 59 1–152

    [41] LiC,LiaoCR,WangJ,LiZY, YingW, HeJ,BaiZYand Wang Y P 2018 Femtosecond laser microprinting of a polymer fiber Bragg grating for high-sensitivity temperature measurements Opt. Lett. 43 3409–12

    [42] Zou H, Wu S S and Shen J 2008 Polymer/silica nanocomposites: preparation, characterization, properties, and applications Chem. Rev. 108 3893–957

    [43] Hayashi K and Iwata M 2015 Stiffness of cancer cells measured with an AFM indentation method J. Mech. Behav. Biomed. Mater. 49 105–11

    [44] LiR,Ye HF, ZhangWS,MaGJandSuYW2015An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers Sci. Rep. 5 15828

    [45] Sader J E, Sanelli J A, Adamson B D, Monty J P, Wei X Z, Crawford S A, Friend J R, Marusic I, Mulvaney P and Bieske E J 2012 Spring constant calibration of atomic force microscope cantilevers of arbitrary shape Rev. Sci. Instrum. 83 103705

    [46] Kámán J, Huszánk R and Bonyár A 2019 Towards more reliable AFM force-curve evaluation: a method for spring constant selection, adaptive lever sensitivity calibration and fitting boundary identification Micron 125 102717

    [47] Shang X G, Wang N, Wang Z M, Jiang H Q, Jia Y F, Zhou N J and Qiu M 2022 Customizable and highly sensitive 3D micro-springs produced by two-photon polymerizations with improved post-treatment processes Appl. Phys. Lett. 120 171107

    [48] Ying Z C, Reitsma M G and Gates R S 2007 Direct measurement of cantilever spring constants and correction for cantilever irregularities using an instrumented indenter Rev. Sci. Instrum. 78 063708

    [49] Xiong C et al 2020 Fiber-tip polymer microcantilever for fast and highly sensitive hydrogen measurement ACS Appl. Mater. Interfaces 12 33163–72

    [50] White I M and Fan X D 2008 On the performance quantification of resonant refractive index sensors Opt. Express 16 1020–8

    [51] Wang Z X, Volinsky A A and Gallant N D 2014 Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument J. Appl. Polym. Sci. 131 41050

    [52] Brown X Q, Ookawa K and Wong J Y 2005 Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response Biomaterials 26 3123–9

    [53] Zhang W J, Choi D S, Nguyen Y H, Chang J and Qin L D 2013 Studying cancer stem cell dynamics on PDMS surfaces for microfluidics device design Sci. Rep. 3 2332

    [54] KimKS,ZhaoY, JangH,LeeSY, KimJM,KimKS, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 457 706–10

    [55] Eddings M A, Johnson M A and Gale B K 2008 Determining the optimal PDMS-PDMS bonding technique for microfluidic devices J. Micromech. Microeng. 18 067001

    [56] Cho H S, Andersson H M, White S R, Sottos R N and Braun V P 2006 Polydimethylsiloxane-based self-healing materials Adv. Mater. 18 997–1000

    [57] Grant C A, Brockwell D J, Radford S E and Thomson N H 2009 Tuning the elastic modulus of hydrated collagen fibrils Biophys. J. 97 2985–92

    [58] Demichelis A, Divieto C, Mortati L, Pavarelli S, Sassi G and Sassi M P 2015 Toward the realization of reproducible atomic force microscopy measurements of elastic modulus in biological samples J. Biomech. 48 1099–104

    [59] Wang Z X, Volinsky A A and Gallant N D 2015 Nanoindentation study of polydimethylsiloxane elastic modulus using Berkovich and flat punch tips J. Appl. Polym. Sci. 132 41384

    [60] Bidhendi A J and Geitmann A 2019 Methods to quantify primary plant cell wall mechanics J. Exp. Bot. 70 3615–48

    [61] Vanstreels E, Alamar M C, Verlinden B E, Enninghorst A, Loodts J K A, Tijskens E, Ramon H and Nicola. B M 2005 Micromechanical behaviour of onion epidermal tissue Postharvest Biol. Technol. 37 163–73

    [62] Maghsoudy-Louyeh S 2011 Nanomechanical Properties of Biocomposites Using Atomic Force Microscopy-Measurement and Modeling (State College, PA: The Pennsylvania State University)

    [63] Alkhouli N et al 2013 The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix Am. J. Physiol. End. Metab. 305 E1427–35

    [64] Qian L and Zhao H W 2018 Nanoindentation of soft biological materials Micromachines 9 654

    [65] Wu PH et al 2018 A comparison of methods to assess cell mechanical properties Nat. Methods 15 491–8

    [66] XuH,LiangT, WeiLY, ZhuJC,LiuXH,JiCC,LiuBand Luo Z P 2021 Nano-elastic modulus of tendon measured directly in living mice J. Biomech. 116 110248

    [67] Norman M D A, Ferreira S A, Jowett G M, Bozec L and Gentleman E 2021 Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy Nat. Protocols 16 2418–49

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. 3D printed fiber-optic nanomechanical bioprobe[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 15005
    Download Citation