• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0210004 (2023)
Zhiyang Xu1,2,3, Qiao Chen1,2,*, and Yongfu Chen1,2
Author Affiliations
  • 1Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
  • 2Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China
  • 3East China Inventory and Planning Institute, National Forestry and Grassland Administration, Hangzhou 310019, Zhejiang , China
  • show less
    DOI: 10.3788/LOP212527 Cite this Article Set citation alerts
    Zhiyang Xu, Qiao Chen, Yongfu Chen. Tree Species Recognition Using Combined Attention and ResNet for Unmanned Aerial Vehicle Images[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210004 Copy Citation Text show less
    ECA mechanism block
    Fig. 1. ECA mechanism block
    Basic unit of ECA-ResNet
    Fig. 2. Basic unit of ECA-ResNet
    Overall structure of proposed network
    Fig. 3. Overall structure of proposed network
    Results of single tree crown segmentation and recognition in five test circular samples
    Fig. 4. Results of single tree crown segmentation and recognition in five test circular samples
    SchemeOptimizerTraining dataValidation dataIndependent test data
    Accuracy /%KappaLossAccuracy /%KappaLossAccuracy /%Kappa
    I(variable size)SGD97.980.96380.097395.730.94490.192977.270.7056
    II(32×32 pixel)SGD93.250.91310.271186.750.82930.492068.180.5966
    III(64×64 pixel)SGD98.980.98690.101296.600.95950.167885.610.8140
    IV(96×96 pixel)SGD97.980.97690.055395.140.93880.183881.820.7629
    V(128×128 pixel)Adam95.190.93810.200096.150.95050.145379.550.7332
    Table 1. Training and independent test results of the model in single-tree crown image with different patch sizes
    Recognized speciesGround true species
    AlnusOther broad-leavesCunninghamiaLiriodendronPinus
    Alnus261000
    Other broad-leaves018422
    Cunninghamia133811
    Liriodendron001150
    Pinus201016
    PA /%89.6681.8286.3683.3384.21
    UA /%96.3069.2386.3693.7584.21
    Table 2. Confusion matrix of independent test dataset
    NetworkTraining dataValidation dataIndependent test data
    Accuracy /%KappaLossAccuracy /%KappaLossAccuracy /%Kappa
    VGG1695.380.94050.178394.230.92580.209075.000.6804
    ResNet1894.360.92510.152993.800.92030.317677.270.7036
    ResNet3495.840.94640.212693.800.92010.272279.550.7356
    ResNet5096.350.94420.150594.800.93010.202480.300.7452
    ResNet10196.690.96020.127894.440.92840.234869.700.6130
    ResNet15296.410.95670.122994.870.93390.226465.910.5641
    resnext50_32x4d96.770.95830.099994.440.92850.184572.730.6501
    densenet12196.400.95360.154493.160.91190.291173.480.6557
    MobileNetV286.410.82540.477188.890.85710.359965.910.5555
    SqueezeNet84.010.79390.572686.750.82860.413968.940.5948
    ECA-ResNet98.980.98690.101296.600.95950.167885.610.8140
    Table 3. Performance comparison of different models (single tree crown image clip dataset with 64×64 pixel)
    SchemeOperationECATraining accuracy /%Validation accuracy /%Test accuracy /%FLOPs /GbitParameter

    Speed /

    (frame·s-1

    I(ResNet50)Before reduced96.3594.8080.303.827235182774.59
    IIBefore reduced96.5794.5183.093.832235183254.99
    III(ECA-ResNet)After reduced98.9896.6085.613.015198866975.45
    Table 4. Performance comparison of CNN model before and after improvement
    Zhiyang Xu, Qiao Chen, Yongfu Chen. Tree Species Recognition Using Combined Attention and ResNet for Unmanned Aerial Vehicle Images[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210004
    Download Citation