• Laser & Optoelectronics Progress
  • Vol. 61, Issue 18, 1837009 (2024)
Daizhou Wen, Xi Wang, and Mingjun Ren*
Author Affiliations
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/LOP240469 Cite this Article Set citation alerts
    Daizhou Wen, Xi Wang, Mingjun Ren. Lightweight Template Matching Algorithm Based on Rendering Perspective Sampling[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837009 Copy Citation Text show less
    Algorithm framework
    Fig. 1. Algorithm framework
    Attention lightweight convolutional submodule
    Fig. 2. Attention lightweight convolutional submodule
    Example of angle sampling
    Fig. 3. Example of angle sampling
    Examples. (a) LINEMOD[36]; (b) Occlusion-LINEMOD[37]
    Fig. 4. Examples. (a) LINEMOD[36]; (b) Occlusion-LINEMOD[37]
    Comparison of Blender and PyTorch3D rendering results
    Fig. 5. Comparison of Blender and PyTorch3D rendering results
    Comparison of qualitative experiments before and after optimization
    Fig. 6. Comparison of qualitative experiments before and after optimization

    算法1:迭代优化过程的渲染视角采样

    输入n-1次采样间隔的点集Pn-1,边集En-1,当前最优位姿pn-1对应点Pn-1k

    输出n次采样间隔的点集Pn

    For Pn-1j in Pn-1

      If Pn-1j,Pn-1k in En-1 Then

        Padjn-1k.append(Pn-1j

    For Padji in Padjn-1k

      Pni=Padji+Pn-1k/2

    Pn=Pn-1k,Pn1,Pn2,,Pni

    End

    Table 0. [in Chinese]
    Block nameInput channelOutput channelKernel sizeExpand channel
    Conv3323
    BaseBlock32163
    BaseBlock1624396
    BaseBlock24243144
    BaseBlock24405144
    BaseBlock40405240
    Conv40161
    Table 1. Structure of proposed model
    NetworkRunning time /minInference time /msNumber of parameters /106Memory size /MB
    BaseNet25-260.315.680.0240.048
    ResNet231.151126.2024.03692.053
    Proposed0.7448.370.04320.464
    Table 2. Comparison of model parameter quantity
    Split No.TrainTestUnseen object name
    1995415038Ape,benchvise,camera,can
    2992815064Cat,driller,duck,eggbox
    3885016142Glue,holepuncher,iron,lamp,phone
    Table 3. Details of datasets
    MethodRenderSeen LMSeen O-LMUnseen LMUnseen O-LM
    Wohlhart’s25Blender95.219.613.38.2
    Balntas’s26Blender96.318.311.57.1
    Template-pose23Blender99.377.394.471.4
    Template-pose23PyTorch3D98.575.795.770.3
    ProposedPyTorch3D97.680.098.174.8
    Table 4. Comparison of Acc15 on LM and O-LM datasets
    Split No.MethodRenderSeen LMSeen O-LMUnseen LMUnseen O-LMAverage
    2Template-poseBlender99.084.197.472.788.3
    2Template-posePyTorch3D97.077.996.670.585.5
    2ProposedPyTorch3D96.881.998.876.588.5
    3Template-poseBlender99.276.888.785.387.5
    3Template-posePyTorch3D99.075.285.278.384.4
    3ProposedPyTorch3D99.278.488.388.388.6
    Table 5. Repeated experiments with LM and O-LM datasets
    ConditionSeen LMSeen O-LMUnseen LMUnseen O-LM
    Without iteration4.7011.455.5720.94
    With iteration4.1611.184.7420.47
    Table 6. Comparison of iterative optimization
    ConditionSeen LMSeen O-LMUnseen LMUnseen O-LMAverage
    With SE99.278.488.388.388.6
    Without SE99.177.286.686.887.4
    Table 7. Attention mechanism ablation experiment
    ConditionSeen LM /%Seen O-LM /%Unseen LM /%Unseen O-LM /%Average /%Inference time /ms
    With DW99.278.488.388.388.648.37

    Without

    DW

    97.470.062.543.668.4669.25
    Table 8. Deep separable convolutional ablation experiment
    Daizhou Wen, Xi Wang, Mingjun Ren. Lightweight Template Matching Algorithm Based on Rendering Perspective Sampling[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837009
    Download Citation