• Laser & Optoelectronics Progress
  • Vol. 59, Issue 24, 2415003 (2022)
Jinghui Chu, Meng Li, and Lü Wei*
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, 300072, China
  • show less
    DOI: 10.3788/LOP202259.2415003 Cite this Article Set citation alerts
    Jinghui Chu, Meng Li, Lü Wei. Adaptive Dynamic Filter Pruning Approach Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(24): 2415003 Copy Citation Text show less
    References

    [1] Wang Z H, Kang H, Chen D F et al. Lightweight deep learning network assisted cell classification using lensless computational microscopic imaging data[J]. Chinese Journal of Lasers, 49, 0507204(2022).

    [2] Li X X, Yu L Y, Yang X C et al. ReMarNet: conjoint relation and margin learning for small-sample image classification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 31, 1569-1579(2021).

    [3] Luo X F, Hu H F. Selected and refined local attention module for object detection[J]. Electronics Letters, 56, 712-714(2020).

    [4] Liu D, Zhang Y, Zhao Y et al. Multi-scale inshore ship detection based on feature re-focusing network[J]. Acta Optica Sinica, 41, 2215001(2021).

    [5] Guo Q, Peng L. Hyperspectral classification based on 3D convolutional neural network and super pixel segmentation[J]. Acta Optica Sinica, 41, 2210001(2021).

    [6] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556

    [7] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [8] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C](2015).

    [9] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).

    [10] Gao H, Tian Y L, Xu F Y et al. Survey of deep learning model compression and acceleration[J]. Journal of Software, 32, 68-92(2021).

    [11] He Y H, Zhang X Y, Sun J. Channel pruning for accelerating very deep neural networks[C], 1398-1406(2017).

    [12] Lin S H, Ji R R, Yan C Q et al. Towards optimal structured CNN pruning via generative adversarial learning[C], 2785-2794(2019).

    [13] Xu X X, Zou Q, Lin X et al. Integral knowledge distillation for multi-person pose estimation[J]. IEEE Signal Processing Letters, 27, 436-440(2020).

    [14] Song H, Mao H Z, Dally W J. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding[EB/OL]. https://arxiv.org/abs/1510.00149

    [15] Zhang J T. Seesaw-Net: convolution neural network with uneven group convolution[EB/OL]. https://arxiv.org/abs/1905.03672v5

    [16] Sun K, Li M J, Liu D et al. IGCV3: interleaved low-rank group convolutions for efficient deep neural networks[EB/OL]. https://arxiv.org/abs/1806.00178

    [17] Yu R C, Li A, Chen C F et al. NISP: pruning networks using neuron importance score propagation[C], 9194-9203(2018).

    [18] Lin M B, Ji R R, Wang Y et al. HRank: filter pruning using high-rank feature map[C], 1526-1535(2020).

    [19] Zhang T Y, Ye S K, Zhang K Q et al. A systematic DNN weight pruning framework using alternating direction method of multipliers[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11212, 191-207(2018).

    [20] Li H, Kadav A, Durdanovic I et al. Pruning filters for efficient convnets[EB/OL]. https://arxiv.org/abs/1608.08710v1

    [21] Zhuang B H, Shen C H, Tan M K et al. Towards effective low-bitwidth convolutional neural networks[C], 7920-7928(2018).

    [22] Gao X T, Zhao Y R, Dudziak L et al. Dynamic channel pruning: feature boosting and suppression[EB/OL]. https://arxiv.org/abs/1810.05331v2

    [23] Ma X, Guo J D, Tang S H et al. Learning connected attentions for convolutional neural networks[C](2021).

    [24] Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 1, 1-60(2009).

    [25] Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C], 807-814(2010).

    [26] Han J, Moraga C. The influence of the sigmoid function parameters on the speed of backpropagation learning[M]. Mira J, Sandoval F. From natural to artificial neural computation, 930, 195-201(1995).

    [27] Abouelnaga Y, Eraqi H M, Moustafa M N. Real-time distracted driver posture classification[EB/OL]. https://arxiv.org/abs/1706.09498v2

    [28] Zhao C L, Ni B B, Zhang J et al. Variational convolutional neural network pruning[C], 2775-2784(2019).