• Photonics Research
  • Vol. 11, Issue 9, A26 (2023)
Baiqiang Zhu1,2, Keye Zhang1,2,*, and Weiping Zhang2,3,4,5
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
  • 2Shanghai Branch, Hefei National Laboratory, Shanghai 201315, China
  • 3School of Physics and Astronomy, and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
  • 4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 5Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.491788 Cite this Article Set citation alerts
    Baiqiang Zhu, Keye Zhang, Weiping Zhang, "Optomechanical preparation of photon number-squeezed states with a pair of thermal reservoirs of opposite temperatures," Photonics Res. 11, A26 (2023) Copy Citation Text show less
    References

    [1] C. You, M. Hong, P. Bierhorst, A. E. Lita, S. Glancy, S. Kolthammer, E. Knill, S. W. Nam, R. P. Mirin, O. S. Magaña-Loaiza, T. Gerrits. Scalable multiphoton quantum metrology with neither pre- nor post-selected measurements. Appl. Phys. Rev., 8, 041406(2021).

    [2] G. S. Thekkadath, M. E. Mycroft, B. A. Bell, C. G. Wade, A. Eckstein, D. S. Phillips, R. B. Patel, A. Buraczewski, A. E. Lita, T. Gerrits, S. W. Nam, M. Stobińska, A. I. Lvovsky, I. A. Walmsley. Quantum-enhanced interferometry with large heralded photon-number states. npj Quantum Inf., 6, 89(2020).

    [3] M. Eaton, A. Hossameldin, R. J. Birrittella, P. M. Alsing, C. C. Gerry, H. Dong, C. Cuevas, O. Pfister. Resolution of 100 photons and quantum generation of unbiased random numbers. Nat. Photonics, 17, 106-111(2023).

    [4] V. Ansari, J. M. Donohue, B. Brecht, C. Silberhorn. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica, 5, 534-550(2018).

    [5] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand, Z. Vernon, N. Quesada, J. Lavoie. Quantum computational advantage with a programmable photonic processor. Nature, 606, 75-81(2022).

    [6] A. Z. Goldberg, A. M. Steinberg. Transcoherent states: optical states for maximal generation of atomic coherence. PRX Quantum, 1, 020306(2020).

    [7] A. Z. Goldberg, A. M. Steinberg, K. Heshami. Beyond transcoherent states: field states for effecting optimal coherent rotations on single or multiple qubits. Quantum, 7, 963(2023).

    [8] A. del Campo, J. G. Muga. Atom Fock-state preparation by trap reduction. Phys. Rev. A, 78, 023412(2008).

    [9] M. Ebert, A. Gill, M. Gibbons, X. Zhang, M. Saffman, T. G. Walker. Atomic Fock state preparation using Rydberg blockade. Phys. Rev. Lett., 112, 043602(2014).

    [10] G. M. D’Ariano, L. Maccone, M. G. A. Paris, M. F. Sacchi. Optical Fock-state synthesizer. Phys. Rev. A, 61, 053817(2000).

    [11] D. Greif, M. F. Parsons, A. Mazurenko, C. S. Chiu, S. Blatt, F. Huber, G. Ji, M. Greiner. Site-resolved imaging of a fermionic Mott insulator. Science, 351, 953-957(2016).

    [12] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz, S. Jochim. Deterministic preparation of a tunable few-fermion system. Science, 332, 336-338(2011).

    [13] A. Majumdar, M. Bajcsy, A. Rundquist, J. Vučković. Loss-enabled sub-Poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett., 108, 183601(2012).

    [14] H. Flayac, V. Savona. Unconventional photon blockade. Phys. Rev. A, 96, 053810(2017).

    [15] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, A. Wallraff. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett., 106, 243601(2011).

    [16] P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 107, 063601(2011).

    [17] T. V. Gevorgyan, A. R. Shahinyan, G. Y. Kryuchkyan. Generation of Fock states and qubits in periodically pulsed nonlinear oscillators. Phys. Rev. A, 85, 053802(2012).

    [18] R. Yanagimoto, E. Ng, T. Onodera, H. Mabuchi. Adiabatic Fock-state-generation scheme using Kerr nonlinearity. Phys. Rev. A, 100, 033822(2019).

    [19] W. Wang, L. Hu, Y. Xu, K. Liu, Y. Ma, S.-B. Zheng, R. Vijay, Y. P. Song, L.-M. Duan, L. Sun. Converting quasiclassical states into arbitrary Fock state superpositions in a superconducting circuit. Phys. Rev. Lett., 118, 223604(2017).

    [20] A. Lingenfelter, D. Roberts, A. A. Clerk. Unconditional Fock state generation using arbitrarily weak photonic nonlinearities. Sci. Adv., 7, eabj1916(2021).

    [21] Y. Yamamoto, S. Machida, W. H. Richardson. Photon number squeezed states in semiconductor lasers. Science, 255, 1219-1224(1992).

    [22] M. Uria, P. Solano, C. Hermann-Avigliano. Deterministic generation of large Fock states. Phys. Rev. Lett., 125, 093603(2020).

    [23] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, D. J. Wineland. Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett., 76, 1796-1799(1996).

    [24] S. Krastanov, V. V. Albert, C. Shen, C.-L. Zou, R. W. Heeres, B. Vlastakis, R. J. Schoelkopf, L. Jiang. Universal control of an oscillator with dispersive coupling to a qubit. Phys. Rev. A, 92, 040303(2015).

    [25] A. S. Parkins, P. Marte, P. Zoller, O. Carnal, H. J. Kimble. Quantum-state mapping between multilevel atoms and cavity light fields. Phys. Rev. A, 51, 1578-1596(1995).

    [26] Y.-X. Liu, L. F. Wei, F. Nori. Generation of nonclassical photon states using a superconducting qubit in a microcavity. Europhys. Lett., 67, 941-947(2004).

    [27] R. W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. V. Albert, L. Frunzio, L. Jiang, R. J. Schoelkopf. Cavity state manipulation using photon-number selective phase gates. Phys. Rev. Lett., 115, 137002(2015).

    [28] P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, S. Haroche. Generating and probing a two-photon Fock state with a single atom in a cavity. Phys. Rev. Lett., 88, 143601(2002).

    [29] M. Weidinger, B. T. H. Varcoe, R. Heerlein, H. Walther. Trapping states in the micromaser. Phys. Rev. Lett., 82, 3795-3798(1999).

    [30] B. T. Varcoe, S. Brattke, M. Weidinger, H. Walther. Preparing pure photon number states of the radiation field. Nature, 403, 743-746(2000).

    [31] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, S. Haroche. Real-time quantum feedback prepares and stabilizes photon number states. Nature, 477, 73-77(2011).

    [32] K. R. Brown, K. M. Dani, D. M. Stamper-Kurn, K. B. Whaley. Deterministic optical Fock-state generation. Phys. Rev. A, 67, 043818(2003).

    [33] B. Peaudecerf, C. Sayrin, X. Zhou, T. Rybarczyk, S. Gleyzes, I. Dotsenko, J. M. Raimond, M. Brune, S. Haroche. Quantum feedback experiments stabilizing Fock states of light in a cavity. Phys. Rev. A, 87, 042320(2013).

    [34] C. Groiseau, A. E. J. Elliott, S. J. Masson, S. Parkins. Proposal for a deterministic single-atom source of quasisuperradiant N-photon pulses. Phys. Rev. Lett., 127, 033602(2021).

    [35] M. França Santos, E. Solano, R. L. de Matos Filho. Conditional large Fock state preparation and field state reconstruction in cavity QED. Phys. Rev. Lett., 87, 093601(2001).

    [36] M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M. Martinis, A. N. Cleland. Generation of Fock states in a superconducting quantum circuit. Nature, 454, 310-314(2008).

    [37] S. P. Premaratne, F. C. Wellstood, B. S. Palmer. Microwave photon Fock state generation by stimulated Raman adiabatic passage. Nat Commun, 8, 14148(2017).

    [38] I. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.-M. Raimond, P. Rouchon. Quantum feedback by discrete quantum nondemolition measurements: towards on-demand generation of photon-number states. Phys. Rev. A, 80, 013805(2009).

    [39] A. S. Parkins, P. Marte, P. Zoller, H. J. Kimble. Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence. Phys. Rev. Lett., 71, 3095-3098(1993).

    [40] X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J. M. Raimond, M. Brune, S. Haroche. Field locked to a Fock state by quantum feedback with single photon corrections. Phys. Rev. Lett., 108, 243602(2012).

    [41] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis, A. N. Cleland. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 459, 546-549(2009).

    [42] V. S. C. Canela, H. J. Carmichael. Bright sub-Poissonian light through intrinsic feedback and external control. Phys. Rev. Lett., 124, 063604(2020).

    [43] K. Vogel, V. M. Akulin, W. P. Schleich. Quantum state engineering of the radiation field. Phys. Rev. Lett., 71, 1816-1819(1993).

    [44] J. M. Geremia. Deterministic and nondestructively verifiable preparation of photon number states. Phys. Rev. Lett., 97, 073601(2006).

    [45] C. K. Hong, L. Mandel. Experimental realization of a localized one-photon state. Phys. Rev. Lett., 56, 58-60(1986).

    [46] C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, S. Haroche. Progressive field-state collapse and quantum non-demolition photon counting. Nature, 448, 889-893(2007).

    [47] J. Tiedau, T. J. Bartley, G. Harder, A. E. Lita, S. W. Nam, T. Gerrits, C. Silberhorn. Scalability of parametric down-conversion for generating higher-order Fock states. Phys. Rev. A, 100, 041802(2019).

    [48] G. Harel, G. Kurizki. Fock-state preparation from thermal cavity fields by measurements on resonant atoms. Phys. Rev. A, 54, 5410-5414(1996).

    [49] J. I. Cirac, R. Blatt, A. S. Parkins, P. Zoller. Preparation of Fock states by observation of quantum jumps in an ion trap. Phys. Rev. Lett., 70, 762-765(1993).

    [50] E. Waks, E. Diamanti, Y. Yamamoto. Generation of photon number states. New J. Phys., 8, 4(2006).

    [51] G. Harder, T. J. Bartley, A. E. Lita, S. W. Nam, T. Gerrits, C. Silberhorn. Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics. Phys. Rev. Lett., 116, 143601(2016).

    [52] J. F. Poyatos, J. I. Cirac, P. Zoller. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett., 77, 4728-4731(1996).

    [53] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, P. Zoller. Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys., 4, 878-883(2008).

    [54] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, P. Zoller. Preparation of entangled states by quantum Markov processes. Phys. Rev. A, 78, 042307(2008).

    [55] C. A. Muschik, E. S. Polzik, J. I. Cirac. Dissipatively driven entanglement of two macroscopic atomic ensembles. Phys. Rev. A, 83, 052312(2011).

    [56] S. Lloyd. Coherent quantum feedback. Phys. Rev. A, 62, 022108(2000).

    [57] R. J. de Assis, T. M. de Mendonça, C. J. Villas-Boas, A. M. de Souza, R. S. Sarthour, I. S. Oliveira, N. G. de Almeida. Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett., 122, 240602(2019).

    [58] K. Zhang, P. Meystre, W. Zhang. Back-action-free quantum optomechanics with negative-mass Bose-Einstein condensates. Phys. Rev. A, 88, 043632(2013).

    [59] S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber, J. P. Ronzheimer, A. Riera, M. del Rey, I. Bloch, J. Eisert, U. Schneider. Emergence of coherence and the dynamics of quantum phase transitions. Proc. Natl. Acad. Sci. USA, 112, 3641-3646(2015).

    [60] E. T. Holland, B. Vlastakis, R. W. Heeres, M. J. Reagor, U. Vool, Z. Leghtas, L. Frunzio, G. Kirchmair, M. H. Devoret, M. Mirrahimi, R. J. Schoelkopf. Single-photon-resolved cross-Kerr interaction for autonomous stabilization of photon-number states. Phys. Rev. Lett., 115, 180501(2015).

    [61] J.-R. Souquet, A. A. Clerk. Fock-state stabilization and emission in superconducting circuits using DC-biased Josephson junctions. Phys. Rev. A, 93, 060301(2016).

    [62] L. B. Arosh, M. C. Cross, R. Lifshitz. Quantum limit cycles and the Rayleigh and van der Pol oscillators. Phys. Rev. Res., 3, 013130(2021).

    [63] D. Kleckner, D. Bouwmeester. Sub-kelvin optical cooling of a micromechanical resonator. Nature, 444, 75-78(2006).

    [64] T. Li, T. Li. Millikelvin cooling of an optically trapped microsphere in vacuum. Fundamental Tests of Physics with Optically Trapped Microspheres, 81-110(2013).

    [65] L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek, S. G. Hofer, S. Hong, N. Kiesel, A. Kugi, M. Aspelmeyer. Real-time optimal quantum control of mechanical motion at room temperature. Nature, 595, 373-377(2021).

    [66] F. Tebbenjohanns, M. L. Mattana, M. Rossi, M. Frimmer, L. Novotny. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature, 595, 378-382(2021).

    [67] F. Elste, S. M. Girvin, A. A. Clerk. Quantum noise interference and backaction cooling in cavity nanomechanics. Phys. Rev. Lett., 102, 207209(2009).

    [68] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [69] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [70] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [71] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [72] A. M. Muniz, F. O. Wu, P. S. Jung, M. Khajavikhan, D. N. Christodoulides, U. Peschel. Observation of photon-photon thermodynamic processes under negative optical temperature conditions. Science, 379, 1019-1023(2023).

    [73] T. Novotný, A. Donarini, A.-P. Jauho. Quantum shuttle in phase space. Phys. Rev. Lett., 90, 256801(2003).

    [74] A. V. Moskalenko, S. N. Gordeev, O. F. Koentjoro, P. R. Raithby, R. W. French, F. Marken, S. E. Savel’ev. Nanomechanical electron shuttle consisting of a gold nanoparticle embedded within the gap between two gold electrodes. Phys. Rev. B, 79, 241403(2009).

    [75] D. W. Utami, H.-S. Goan, C. A. Holmes, G. J. Milburn. Quantum noise in the electromechanical shuttle: quantum master equation treatment. Phys. Rev. B, 74, 014303(2006).

    [76] A. Xuereb, R. Schnabel, K. Hammerer. Dissipative optomechanics in a Michelson-Sagnac interferometer. Phys. Rev. Lett., 107, 213604(2011).

    [77] A. K. Tagantsev, E. S. Polzik. Dissipative optomechanical coupling with a membrane outside of an optical cavity. Phys. Rev. A, 103, 063503(2021).

    [78] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, J. G. Harris. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 6, 707-712(2010).

    [79] D. Kleckner, B. Pepper, E. Jeffrey, P. Sonin, S. M. Thon, D. Bouwmeester. Optomechanical trampoline resonators. Opt. Express, 19, 19708-19716(2011).

    [80] I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, K. Karrai. Optical cooling of a micromirror of wavelength size. Appl. Phys. Lett., 90, 104101(2007).

    [81] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, J. G. E. Harris. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452, 72-75(2008).

    [82] M. Li, W. H. P. Pernice, H. X. Tang. Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides. Phys. Rev. Lett., 103, 223901(2009).

    [83] T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, K. J. Vahala. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett., 94, 223902(2005).

    [84] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, M. Aspelmeyer. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).

    [85] A. Ranfagni, P. Vezio, M. Calamai, A. Chowdhury, F. Marino, F. Marin. Vectorial polaritons in the quantum motion of a levitated nanosphere. Nat. Phys., 17, 1120-1124(2021).

    [86] O. Romero-Isart, M. L. Juan, R. Quidant, J. I. Cirac. Toward quantum superposition of living organisms. New J. Phys., 12, 033015(2010).

    [87] L. Dania, K. Heidegger, D. S. Bykov, G. Cerchiari, G. Araneda, T. E. Northup. Position measurement of a levitated nanoparticle via interference with its mirror image. Phys. Rev. Lett., 129, 013601(2022).

    [88] G. P. Conangla, F. Ricci, M. T. Cuairan, A. W. Schell, N. Meyer, R. Quidant. Optimal feedback cooling of a charged levitated nanoparticle with adaptive control. Phys. Rev. Lett., 122, 223602(2019).

    [89] M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, P. E. Barclay. Dissipative and dispersive optomechanics in a nanocavity torque sensor. Phys. Rev. X, 4, 021052(2014).

    [90] T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, D. M. Stamper-Kurn. Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett., 105, 133602(2010).

    Baiqiang Zhu, Keye Zhang, Weiping Zhang, "Optomechanical preparation of photon number-squeezed states with a pair of thermal reservoirs of opposite temperatures," Photonics Res. 11, A26 (2023)
    Download Citation