[1] LIU H Q, RENA G, GAOA Y, et al. Numerical investigation of a multi-functional optical device based on graphene-silica metamaterial[J]. Journal of Modern Optics, 2016, 23(11): 1099-1105.
[2] YANG Y, LI J, LI J, et al. Plasmon-induced reflection metasurface with dual-mode modulation for multi-functional THz devices[J]. Optics and Lasers in Engineering, 2020(127): 105969-1-105969-7.
[3] SHIRMANESH G K, SOKHOYAN R, WU P C, et al. Electro-optically tunable multi-functional metasurfaces[J]. ACS Nano, 2020, 14(6): 6912-6920.
[4] ZHANG H, LIU Y, LIU Z, et al. Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors[J]. Optics Express, 2021, 29(1): 70-81.
[5] ZHANG C, GAO J, CAO X, et al. Multifunctional tunable metasurface for radiation and scattering manipulation[J]. IET Microwaves Antennas & Propagation, 2019, 13(15): 2649-2653.
[6] PENG L, JIANG X, LI S M. Multi-functional device with switchable functions of absorption and polarization conversion at terahertz range[J]. Nanoscale Research Letters, 2018, 13(1): 385-1-385-9.
[7] ABDOLLAHRAMEZANI S, HEMMATYAR O, TAGHINEJAD M, et al. Dynamic hybrid metasurfaces[J]. Nano Letters, 2021, 21(3): 1238-1245.
[8] ZHU Q H, DONG J F, WANG J J, et al. Linear optical switch metasurface composed of cross-shaped nano-block and Ge2Sb2Te5 film[J]. Optics Communications, 2021, 498: 127222-1-127222-8.
[9] LI Z W, LI J. Multifunctional terahertz metasurface based on GeTe medium[J]. Optics Communications, 2012, 490: 126909-1-126909-6.
[10] SONG Z Y, ZHONG J H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Opticals Express, 2020, 28(8): 12487-12497.
[11] LUO J, SHI X, LUO X, et al. Broadband switchable terahertz half-/
[12] LI Y, LUO J, LI X, et al. Switchable quarter-wave plate, and half-wave plate based on phase-change metasurface[J]. IEEE Photonics Journal, 2020, 12(2): 4600410-1-4600410-10.
[13] ERALAR V, HAJIAN H, ZBAY E. VO2-graphene-integrated hBN
[14] CONG L, PITCHAPPA P, WU Y, et al. Active multifunctional microelectromechanical system metadevices: applications in polarization control, wavefront deflection, and holograms[J]. Advanced Optical Materials, 2016, 5: 1600716-1-1600716-8.
[15] PHAM T L, XUAN K B, TUNG B S, et al. Origami-based stretchable bi-functional metamaterials: reflector and broadband absorber[J]. Journal of Physics D: Applied Physics, 2021, 54(16): 165111-1-165111-10.
[16] NOVOSELOV K S, FALKO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490: 192-200.
[17] YE M Q, HUI F M, YONG Z R, et al. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial[J]. Optics Express, 2019, 27(4): 5253-5263.
[19] CHANG P H, LIN C, HELMY A S. Efficient integrated graphene photonics in the visible and near-IR[J]. Laser & Photonics Reviews, 2017, 11(5): 1700003-1-1700003-5.
[20] GUAN S, CHENG J, CHEN T, et al. Bi-functional polarization conversion in hybrid graphene-dielectric metasurfaces[J]. Optics Letters, 2019, 44(23): 5683-5686.
[22] GUO T, CHRISTOS A. Broadband polarizers based on graphene metasurfaces[J]. Optics Letters, 2016, 41(23): 5592-5595.
[23] NIKITIN A Y, GUINEA F, GARCIA-VIDAL F J, et al. Edge and waveguide THz surface plasmon modes in graphene micro-ribbons[J]. Physical Review B, 2011, 84(16): 1401-1408.
[24] HE J W, DONG T, CHI B H, et al. Metasurfaces for terahertz wavefront modulation: a review[J]. Journal of Infrared Millimeter and Terahertz Waves, 2020, 41(6): 607-631.
[25] BANG S, KIM J, YOON G, et al. Recent advances in tunable and reconfigur-able metamaterials[J]. Micromachines, 2018, 9(11): 560-1-560-12.
[26] CHEN K, ZHANG X, CHEN X, et al. Active dielectric metasurfaces for switchable terahertz beam steering and focusing[J]. IEEE Photonics Journal, 2021, 13(1): 99-1-99-11.
[27] WEN D, CHEN S, YUE F, et al. Metasurface device with helicity-dependent functionality[J]. Advanced Optical Materials, 2016, 4(2): 321-327.
[28] LING Y, HUANG L, HONG W, et al. Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation[J]. Optics Express, 2017, 25(24): 29812-29821.
[29] SHANG X J, HE H R, YANG H, et al. Frequency dependent multi-functional polarization convertor based on metasurface[J]. Optics Communications, 2019, 449: 8-12.
[30] BIAN K, LU D, HU W. Dual-functional dielectric metasurface doublets[J]. Optics Express, 2019, 27(23): 34259-34269.
[31] IQBAL S, LIU S, LUO J, et al. Controls of transmitted electromag-netic waves for diverse functionalities using polarization-selective dual-band 2bit coding metasurface[J]. Journal of Optics, 2020, 22(1): 015104-1-015104-13.
[32] ZHANG Z, WANG J, ZHU R, et al. Multifunctional full-space metasurface controlled by frequency, polarization and incidence angle[J]. Optics Express, 2021, 29(5): 7544-7557
[33] PAN W K, DONG J F, CAI T, et al. Trifunctional metasurfaces: concept and characterizations[J]. Optics Express, 2018, 26(13): 17447-17457.
[34] FANG Q H, DONG J F,WU L P, et al. Trifunctional metasurface for manipulating linearly and circularly polarized waves in transmission and reflection modes[J]. Applied Physics Letters, 2020, 11(7): 074102-1-074102-6.
[35] FAN J, CHENG Y. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave[J]. Journal of Physics D: Applied Physics, 2020, 53(2): 025109-1-025109-10.
[36] LI J S, ZHOU C. Multi-functional terahertz wave regulation based on a silicon medium metasurface[J]. Optical Materials Express, 2021, 11(2): 310-318.
[37] VASIC B, ZOGRAFOPOULOS D C, ISIC G, et al. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals[J]. Nanotechnology, 2017, 28(12): 124002-1-124002-11.
[39] WEN S, JIN C. Multilayer Huygens' metasurface absorber toward snapshot multispectral imaging[J]. Journal of Optics, 2021, 23(4): 044001-1-044001-6.