• Optical Communication Technology
  • Vol. 48, Issue 1, 60 (2024)
ZHANG Yuqi and ZHAO Jia
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13921/j.cnki.issn1002-5561.2024.01.011 Cite this Article
    ZHANG Yuqi, ZHAO Jia. Reliability and failure analysis of oxide VCSELs[J]. Optical Communication Technology, 2024, 48(1): 60 Copy Citation Text show less
    References

    [1] UEDA O. Reliability and degradation of III-V optical devices focusing on gradual degradation[M]. New York: Springer, 2013.

    [2] IGA K. Forty years of vertical-cavity surface-emitting laser: invention and innovation[J]. Japanese Journal of Applied Physics, 2018, 57(8S2): 08PA01-1-08PA01-7.

    [3] TWESTEN R D, FOLLSTAEDT D M, CHOQUETTE K D, et al. Mic-rostructure of laterally oxidized Al{sub x} Ga{sub 1{minus}x} As layers in vertical-cavity lasers[J]. Applied Physics Letters, 1996, 69(1): 19-21.

    [4] CHOQUETTE K D, GEIB K M, CHUI H C, et al. Selective oxidation of buried AlGaAs versus AlAs layers[J]. Applied Physics Letters, 1996, 69(10): 1385-1387.

    [5] HERRICK R W, DAFINCA A, FARTHOUAT P, et al. Corrosion-based failure of oxide-aperture VCSELs[J]. IEEE Journal of Quantum Electronics, 2013, 49(12): 1045-1052.

    [6] TATUM J A, CLARK A, GUENTER J K, et al. Commercialization of Honeywell's VCSEL technology[C]//SPIE. Proceedings of Symposium on Integrated Optoelectronics. San Jose: SPIE, 2000: 2-13.

    [7] GRAHAM L A, SCHNOES M, MARANOWSKI K D, et al. New de-velopments in 850 and 1300nm VCSELs at JDSU[C]//SPIE. Proceedings of Integrated Optoelectronic Devices 2009. San Jose. SPIE, 2009: 72290B-1-72290B-8.

    [8] GUENTER J K, TATUM J A, HAWTHORNE III R A, et al. VCSELs at Honeywell: the story continues[C]//SPIE. Proceedings of Integrated Optoelec-tronic Devices 2004. San Jose, CA, United States, 2004: 34-46.

    [9] GEBIZLIOGLU O. Generic reliability assurance requirements for opto-electronic devices used in telecommunications equipment: GR-468-CORE[S/OL]. https://www.doc88.com/p-43247032363871.html.

    [10] DESHAYES Y, VERDIER F, BECHOU L, et al. Estimation of lifetime distributions on 1550-nm DFB laser diodes using Monte-Carlo statistic computations[C]//SPIE. Proceedings of the International Society for Optical Engineering. Strasbourg: SPIE, 2004: 103-115.

    [11] XUN M, PAN G, ZHAO Z Z, et al. 190 ℃ high-temperature operation of 905-nm VCSELs with high performance[J]. IEEE Transactions on Electron Devices, 2021, 68(6): 2829-2834.

    [12] HERRICK R W. Reliability engineering in optoelectronic devices and fiber optic transceivers[J]. Reliability of Semiconductor Lasers and Optoelec-tronic Devices. Elsevier, 2021: 47-87.

    [14] ZHANG Y Q, ZUO Z Y, KAN Q, et al. Common failure modes and mechanisms in oxide vertical cavity surface emitting lasers[J]. Chinese Optics, 2022, 15(2): 187-209.

    [16] MEIER H, SANTSCHI R, ODERMATT S, et al. A TCAD approach to robust ESD design in oxide-confined VCSELs[C]//SPIE. Proceedings of Integrated Optoelectronic Devices 2007. San Jose: SPIE, 2007: 648405-1-648405-10.

    [17] MATHES D T, GUENTER J, HAWKINS B, et al. An atlas of ESD failure signatures in vertical cavity surface emitting lasers[C]//SPIE. Proceedings of ISTFA 2005, San Jose: SPIE, 2005: 336-343.

    [18] PAO J J, WU T C, KYI W, et al. Reliability and manufacturability of 25G VCSELs with oxide apertures formed by in-situ monitoring[C]//SPIE. Proceedings of Conference on Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X. SPIE OPTO. San Francisco: SPIE, 2017: 1011519-1-1011519-7.