[1] Ratier A, Feraud P, Chalon F et al. An X-ray diffraction method to improve fatigue fracture surface analysis[J]. Journal of Failure Analysis and Prevention, 16, 369-375(2016).
[2] Zárate B A, Caicedo J M, Yu J G et al. Deterministic and probabilistic fatigue prognosis of cracked specimens using acoustic emissions[J]. Journal of Constructional Steel Research, 76, 68-74(2012).
[3] Chandra K, Kain V, Bhutani V et al. Low temperature thermal aging of austenitic stainless steel welds: Kinetics and effects on mechanical properties[J]. Materials Science and Engineering: A, 534, 163-175(2012).
[4] Yi Y S, Shoji T. Quantitative evaluation of material degradation of thermally aged duplex stainless steels using chemical immersion test[J]. Journal of Nuclear Materials, 240, 62-69(1996).
[5] Yang L, Zhang Y H, Liu J M et al. Spectral preprocessing to improve accuracy of quantitative detection of elemental Cr in austenitic stainless steel by laser-induced breakdown spectroscopy[J]. Review of Scientific Instruments, 93, 033002(2022).
[6] Ke C, Li Y, Liu X et al. Application of laser induced breakdown spectroscopy for fast depth profiling analysis of type 316 stainless steel parts corroded by liquid lithium[J]. Fusion Engineering and Design, 136, 1647-1652(2018).
[7] Lu S Z, Dong M R, Chen Q F et al. Temporal-spatial resolved laser-induced breakdown spectroscopy of T91 steel of different aging grades[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 151, 1-11(2019).
[8] Lu S Z, Dong M R, Huang J W et al. Estimation of the aging grade of T91 steel by laser-induced breakdown spectroscopy coupled with support vector machines[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 140, 35-43(2018).
[9] Huang J W, Dong M R, Lu S Z et al. Estimation of the mechanical properties of steel via LIBS combined with canonical correlation analysis (CCA) and support vector regression (SVR)[J]. Journal of Analytical Atomic Spectrometry, 33, 720-729(2018).
[10] Yu Y S, Lu J D, Dong M R et al. Study on the influence of surface characteristics of T91 metal pipeline on laser-induced breakdown spectroscopy measurement[J]. Applied Science and Technology, 47, 82-87(2020).
[11] Zhang Y S, Dong M R, Cai J B et al. Study on the evaluation of the aging grade for industrial heat-resistant steel by laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 37, 139-147(2022).
[12] Zhang Y S, Dong M R, Cai J B et al. Estimation of the aging grade of heat-resistant steel based on portable laser-induced breakdown spectroscopy[J]. Metallurgical Analysis, 40, 86-93(2020).
[13] Cai J B, Dong M R, Zhang Y S et al. Estimating the aging grade of heat-resistant steel by using portable laser-induced breakdown spectroscopy[J]. Atomic Spectroscopy, 42, 43-50(2021).
[14] Bai W Y, Chen W F, Yang C J et al. Fine classification method of stainless steel based on LIBS technology[J]. Laser & Optoelectronics Progress, 59, 2330001(2022).
[15] Wen D P, Liang X Y, Su M G et al. Classification of ores using laser-induced breakdown spectroscopy combined with PCA-PSO-SVM[J]. Laser & Optoelectronics Progress, 58, 2314006(2021).