• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210012 (2023)
Li Zhao1, Leiquan Wang1, Junsan Zhang1,*, Zhimin Shao2, and Jie Zhu3
Author Affiliations
  • 1College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, Shandong, China
  • 2State Grid Shandong Electric Power Company, Jinan 250003, Shandong, China
  • 3Department of Information Management, the National Police University for Criminal Justice, Baoding 071000, Hebei, China
  • show less
    DOI: 10.3788/LOP221628 Cite this Article Set citation alerts
    Li Zhao, Leiquan Wang, Junsan Zhang, Zhimin Shao, Jie Zhu. Hyperspectral Image Classification Based on Dual-Channel Feature Enhancement[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210012 Copy Citation Text show less
    3D-CNN with batch normalization
    Fig. 1. 3D-CNN with batch normalization
    Architecture diagram of CA
    Fig. 2. Architecture diagram of CA
    Multiple-branch construction
    Fig. 3. Multiple-branch construction
    Structure of multi-branch block
    Fig. 4. Structure of multi-branch block
    DCFE network structure
    Fig. 5. DCFE network structure
    Classification result diagrams of IP dataset. (a) Ground truth; (b)-(g) classification results of different methods
    Fig. 6. Classification result diagrams of IP dataset. (a) Ground truth; (b)-(g) classification results of different methods
    Classification result diagrams of UP dataset. (a) Ground-truth; (b)-(g) classification results of different methods
    Fig. 7. Classification result diagrams of UP dataset. (a) Ground-truth; (b)-(g) classification results of different methods
    Classification result diagram of SV dataset. (a) Ground-truth; (b)-(g) classification results of different methods
    Fig. 8. Classification result diagram of SV dataset. (a) Ground-truth; (b)-(g) classification results of different methods
    Classification result diagram of BS dataset. (a) Ground-truth; (b)-(g) classification results of different methods
    Fig. 9. Classification result diagram of BS dataset. (a) Ground-truth; (b)-(g) classification results of different methods
    Layer nameKernel sizeOutput size
    Input(11×11×200)
    Conv(1×1×7)(11×11×97,24)
    Spectral block(1×1×7)(11×11×97,24)
    BN-Mish-Conv(1×1×97)(11×11×1,24)
    Table 1. Implementation of spectral-channel
    Layer nameKernel sizeOutput size
    Input(11×11×200)
    Conv(1×1×200)(11×11×1,24)
    Spatial block(3×3×1)(11×11×1,24)
    Table 2. Implementation of spatial-channel
    Layer nameKernel sizeOutput size
    Concatenate(11×11×1,48)
    Attention block(11×11×1,48)
    BN-Mish-dropout-GAP(1×48)
    Fully connected(1×16)
    Table 3. Implementation of classification module
    OrderClassNumberTraining setVerification setTest set
    Total102493073079635
    1alfalfa463340
    2corn-notill142842421344
    3corn-mintill8302424782
    4corn23777223
    5grass-pasture4831414455
    6grass-trees7302121688
    7grass-pasture-mowed283322
    8hay-windrowed4781414450
    9oats203314
    10soybean-notill9722929914
    11soybean-mintill245573732309
    12soybean-clean5931717559
    13wheat20566193
    14woods126537371191
    15buildings-grass-tree-drives3861111364
    16stone-steel-towers933387
    Table 4. Samples for each category of training, validation, and testing for IP dataset
    OrderClassNumberTraining setVerification setTest set
    Total4277621021042356
    1asphalt663133336465
    2meadows18649939318463
    3gravel209910102079
    4corn306415153034
    5trees1345661333
    6bare soil502925254979
    7bitumen1330661318
    8self-blocking bricks368218183646
    9shadows94744939
    Table 5. Samples for each category of training, validation, and testing for UP dataset
    OrderClassNumberTraining setVerification setTest set
    Total5412926326353603
    1brocoli-green-weeds-1200910101989
    2brocoli-green-weeds-2372618183690
    3fallow1976991958
    4fallow-rough-plow1394661382
    5fallow-smooth267813132652
    6stubble395919193921
    7celery357917173545
    8grapes-untrained11271565611159
    9soil-vinyard-develop620331316141
    10corn-senesced-green-weeds327816163246
    11lettuce-romaine-4wk1068551058
    12lettuce-romaine-5wk1927991909
    13lettuce-romaine-6wk91644908
    14lettuce-romaine-7wk1070551060
    15vinyard-untrained726836367196
    16vinyard-vertical-trellis1807991789
    Table 6. Samples for each category of training, validation, and testing for SV dataset
    OrderClassNumberTraining setVerification setTest set
    Total324840403168
    1water27033264
    2hippo grass1012297
    3floodplain grasses 125133245
    4floodplain grasses 221533209
    5reeds 126933263
    6riparian26933263
    7fierscar 225933253
    8island interior20333197
    9acacia woodlands31444306
    10acacia shrublands24833242
    11acacia grasslands30544297
    12short mopane18122177
    13mixed mopane26933263
    14exposed soils951193
    Table 7. Samples for each category of training, validation, and testing for BS dataset
    ClassColorSVMSSRNFDSSCDBMADBDADCFE
    1 /%24.1967.3997.7261.7687.50100
    2 /%56.7184.5898.7492.3094.2298.13
    3 /%65.0992.4997.3197.9398.3294.61
    4 /%39.6391.3797.2096.1598.1896.81
    5 /%87.3399.0499.5398.0010097.63
    6 /%83.8796.1892.8394.8696.3495.91
    7 /%57.208810052.9483.3390.90
    8 /%89.2895.7010010010097.59
    9 /%22.5857.1488.8850.00100100
    10 /%66.7078.3388.9295.5291.1694.77
    11 /%62.5095.8399.2395.9997.4796.84
    12 /%51.8685.5797.1686.8997.6195.63
    13 /%94.7991.8698.9010097.95100
    14 /%90.4291.9093.4492.8195.8696.88
    15 /%62.8290.7695.9290.9393.6796.24
    16 /%98.4610092.3092.2292.3093.18
    OA /%69.3590.5296.1493.1496.1996.57
    AA /%65.8687.8896.1586.7795.2496.57
    Kappa /%64.6589.2195.4492.1895.6596.09
    Training time /s12.2356.06132.43108.6778.9675.41
    Test time /s1.393.395.657.686.837.33
    Table 8. Classification results of IP dataset of 3% training samples
    ClassColorSVMSSRNFDSSCDBMADBDADCFE
    1 /%80.2694.8198.8893.6796.2496.49
    2 /%86.9498.5098.8296.3499.2399.26
    3 /%71.1310010099.0299.8799.44
    4 /%96.4410091.7497.4398.2098.78
    5 /%90.8599.3299.9299.5599.9299.92
    6 /%77.0293.4399.6198.6798.0699.97
    7 /%69.7095.9610098.5010099.21
    8 /%67.3075.8784.0282.4884.1191.19
    9 /%99.8999.6899.6696.8810099.33
    OA /%83.0794.8597.0295.0697.1198.15
    AA /%82.2495.2896.9695.8497.2998.18
    Kappa /%77.0793.1796.0493.4096.1797.54
    Training time /s5.3212.0632.1629.8321.8820.12
    Test time /s2.195.2113.2213.5211.2512.10
    Table 9. Classification results of UP dataset of 0.5% training samples
    ClassColorSVMSSRNFDSSCDBMADBDADCFE
    1 /%99.84100100100100100
    2 /%98.9510097.2010097.84100
    3 /%89.8794.3599.5899.5796.92100
    4 /%97.3095.6396.9190.2697.7194.33
    5 /%93.5599.4010097.6699.26100
    6 /%99.7910099.7410099.9799.77
    7 /%91.3399.4610091.9099.88100
    8 /%74.7389.1495.1595.6296.5397.32
    9 /%97.6999.5189.3199.6998.76100
    10 /%90.0197.7598.1797.3897.7099.28
    11 /%75.9292.9793.1781.7695.4095.49
    12 /%95.1999.6398.3595.9399.79100
    13 /%94.8699.8810099.88100100
    14 /%89.2698.0495.9297.6296.0097.78
    15 /%75.8587.9591.9489.9794.4799.03
    16 /%99.03100100100100100
    OA /%88.0995.3595.8595.9097.7098.95
    AA /%91.4597.1197.2196.0898.1498.93
    Kappa /%86.7094.8295.3895.4497.4498.83
    Training time /s10.2785.65123.14146.2882.3380.56
    Test time /s4.1216.3231.0542.5625.6723.66
    Table 10. Classification results of SV dataset of 0.5% training samples
    ClassColorSVMSSRNFDSSCDBMADBDADCFE
    1 /%10010083.9596.3395.9793.26
    2 /%70.7095.8378.4010098.0095.14
    3 /%84.1010095.57100100100
    4 /%65.9581.1882.8289.4085.7786.12
    5 /%82.6284.5510099.4598.9692.30
    6 /%65.7193.2462.1180.1887.0495.45
    7 /%78.7794.7598.8284.3310096.93
    8 /%65.8797.5110010099.49100
    9 /%75.1881.7410010091.04100
    10 /%69.8210097.6099.1810097.99
    11 /%95.4910099.0099.32100100
    12 /%93.1010093.1294.62100100
    13 /%76.25100100100100100
    14 /%90.41100100100100100
    OA /%78.6394.2790.8094.8796.3996.83
    AA /%79.5794.9192.4595.9196.8796.94
    Kappa /%76.8793.7990.0394.4596.0996.57
    Training time /s1.6510.2522.3520.8818.6519.39
    Test time /s0.412.012.373.022.112.04
    Table 11. Classification results of BS dataset of 1.2% training samples
    Algorithm0.5%1%3%5%10%
    SVM48.5355.9569.3574.7480.55
    SSRN64.9981.4090.520.95597.84
    FDSSC70.7584.7196.1497.2198.02
    DBMA59.3377.6493.1493.7596.91
    DBDA56.9778.8196.1996.5897.55
    DCFE74.1086.5496.5797.8398.34
    Table 12. OA for different proportions of training samples in IP
    Algorithm0.1%0.5%1%3%5%
    SVM70.5983.0788.4590.3593.29
    SSRN78.3294.8597.1199.4399.69
    FDSSC88.9797.0297.7499.5099.58
    DBMA89.8795.0696.3799.1099.49
    DBDA88.0197.1198.4099.0799.33
    DCFE90.7998.1598.6699.9999.99
    Table 13. OA for different proportions of training samples in UP
    Algorithm0.1%0.5%1%3%5%
    SVM78.6588.0989.8991.2492.47
    SSRN67.2295.3596.3297.2398.14
    FDSSC88.8395.8596.4897.5298.85
    DBMA92.1595.9096.6697.6298.21
    DBDA94.2397.7098.3198.9599.36
    DCFE95.7098.9599.2599.8199.98
    Table 14. OA for different proportions of training samples in SV
    Algorithm0.5%1.2%3%5%10%
    SVM73.5378.6387.8289.0692.76
    SSRN84.0794.2795.5298.1999.15
    FDSSC87.9890.8096.3397.2499.46
    DBMA93.3694.8795.8898.0199.04
    DBDA96.2796.3997.3898.6499.33
    DCFE96.6696.8399.2499.6299.80
    Table 15. OA for different proportions of training samples in BS
    Li Zhao, Leiquan Wang, Junsan Zhang, Zhimin Shao, Jie Zhu. Hyperspectral Image Classification Based on Dual-Channel Feature Enhancement[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210012
    Download Citation