[1] Philip N K, Ananthasayanam M R. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft[J]. Acta Astronautica, 52, 511-522(2003). http://www.sciencedirect.com/science/article/pii/S009457650200125X
Philip N K, Ananthasayanam M R. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft[J]. Acta Astronautica, 52, 511-522(2003). http://www.sciencedirect.com/science/article/pii/S009457650200125X
[2] Gasbarri P, Sabatini M, Palmerini G B. Ground tests for vision based determination and control of formation flying spacecraft trajectories[J]. Acta Astronautica, 102, 378-391(2014). http://www.sciencedirect.com/science/article/pii/S0094576513004384
Gasbarri P, Sabatini M, Palmerini G B. Ground tests for vision based determination and control of formation flying spacecraft trajectories[J]. Acta Astronautica, 102, 378-391(2014). http://www.sciencedirect.com/science/article/pii/S0094576513004384
[3] Sharp C S, Shakernia O, Sastry S S. A vision system for landing an unmanned aerial vehicle. [C]∥Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. no.01CH37164), May 21-26, 2001, Seoul, Korea. New York: IEEE, 1720-1727(2001).
Sharp C S, Shakernia O, Sastry S S. A vision system for landing an unmanned aerial vehicle. [C]∥Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. no.01CH37164), May 21-26, 2001, Seoul, Korea. New York: IEEE, 1720-1727(2001).
[4] Wang X F, Dong X M, Kong X W et al. Vision based measurement of refueling drogue for autonomous aerial refueling[J]. Applied Mechanics and Materials, 590, 618-622(2014). http://www.scientific.net/AMM.590.618
Wang X F, Dong X M, Kong X W et al. Vision based measurement of refueling drogue for autonomous aerial refueling[J]. Applied Mechanics and Materials, 590, 618-622(2014). http://www.scientific.net/AMM.590.618
[5] Martínez C, Richardson T, Thomas P et al. A vision-based strategy for autonomous aerial refueling tasks[J]. Robotics and Autonomous Systems, 61, 876-895(2013). http://www.sciencedirect.com/science/article/pii/S0921889013000420
Martínez C, Richardson T, Thomas P et al. A vision-based strategy for autonomous aerial refueling tasks[J]. Robotics and Autonomous Systems, 61, 876-895(2013). http://www.sciencedirect.com/science/article/pii/S0921889013000420
[6] Wang J, Wang X J, Liu F et al. Modeling of binocular stereo vision for remote coordinate measurement and fast calibration[J]. Optics and Lasers in Engineering, 54, 269-274(2014). http://www.sciencedirect.com/science/article/pii/S0143816613002376
Wang J, Wang X J, Liu F et al. Modeling of binocular stereo vision for remote coordinate measurement and fast calibration[J]. Optics and Lasers in Engineering, 54, 269-274(2014). http://www.sciencedirect.com/science/article/pii/S0143816613002376
[7] Li W M, Shan S Y, Liu H. High-precision method of binocular camera calibration with a distortion model[J]. Applied Optics, 56, 2368-2377(2017). http://europepmc.org/abstract/MED/28375284
Li W M, Shan S Y, Liu H. High-precision method of binocular camera calibration with a distortion model[J]. Applied Optics, 56, 2368-2377(2017). http://europepmc.org/abstract/MED/28375284
[8] Jiang T, Cheng X S, Cui H H et al. Calibration method of binocular vision system with zoom lens based on homography matrix[J]. Acta Optica Sinica, 38, 0315005(2018).
Jiang T, Cheng X S, Cui H H et al. Calibration method of binocular vision system with zoom lens based on homography matrix[J]. Acta Optica Sinica, 38, 0315005(2018).
[9] Ding M, Wei L, Wang B F. Vision-based estimation of relative pose in autonomous aerial refueling[J]. Chinese Journal of Aeronautics, 24, 807-815(2011). http://www.sciencedirect.com/science/article/pii/S1000936111600952
Ding M, Wei L, Wang B F. Vision-based estimation of relative pose in autonomous aerial refueling[J]. Chinese Journal of Aeronautics, 24, 807-815(2011). http://www.sciencedirect.com/science/article/pii/S1000936111600952
[10] Zhou K, Wang X J, Wang Z et al. Complete initial solutions for iterative pose estimation from planar objects[J]. IEEE Access, 6, 22257-22266(2018). http://ieeexplore.ieee.org/document/8340231/
Zhou K, Wang X J, Wang Z et al. Complete initial solutions for iterative pose estimation from planar objects[J]. IEEE Access, 6, 22257-22266(2018). http://ieeexplore.ieee.org/document/8340231/
[11] Lü Y Y, Gu Y Y, Gao Z Y et al. Design and experiment of the monocular vision measurement system based on spatial cooperation pose[J]. Laser & Optoelectronics Progress, 54, 121505(2017).
Lü Y Y, Gu Y Y, Gao Z Y et al. Design and experiment of the monocular vision measurement system based on spatial cooperation pose[J]. Laser & Optoelectronics Progress, 54, 121505(2017).
[12] Wang X J, Cao Y, Zhou K. Methods of monocular pose measurement based on planar objects[J]. Optics and Precision Engineering, 25, 274-280(2017).
Wang X J, Cao Y, Zhou K. Methods of monocular pose measurement based on planar objects[J]. Optics and Precision Engineering, 25, 274-280(2017).
[13] Su J D, Qi X H, Duan X S. Plane pose measurement method based on monocular vision and checkerboard target[J]. Acta Optica Sinica, 37, 0815002(2017).
Su J D, Qi X H, Duan X S. Plane pose measurement method based on monocular vision and checkerboard target[J]. Acta Optica Sinica, 37, 0815002(2017).
[14] Liu H Q, Yang L H, Ren Y J et al. Large-scale 3D coordinate measurement based on orthogonal cylindrical imaging cameras[J]. Infrared and Laser Engineering, 45, 1117002(2016).
Liu H Q, Yang L H, Ren Y J et al. Large-scale 3D coordinate measurement based on orthogonal cylindrical imaging cameras[J]. Infrared and Laser Engineering, 45, 1117002(2016).
[15] Guan R F, Yang L H, Wang L J et al. Position and attitude precision measurement of spatial objects based on orthogonal cylindrical imaging[J]. Acta Optica Sinica, 36, 1112003(2016).
Guan R F, Yang L H, Wang L J et al. Position and attitude precision measurement of spatial objects based on orthogonal cylindrical imaging[J]. Acta Optica Sinica, 36, 1112003(2016).
[16] Zhou K, Wang X J, Wei H et al. Modeling and calibration of a precise optical positioning system based on four linear cameras[J]. Applied Optics, 57, 5538-5548(2018). http://www.osapublishing.org/abstract.cfm?URI=ao-57-19-5538
Zhou K, Wang X J, Wei H et al. Modeling and calibration of a precise optical positioning system based on four linear cameras[J]. Applied Optics, 57, 5538-5548(2018). http://www.osapublishing.org/abstract.cfm?URI=ao-57-19-5538
[17] Ai L, Yuan F, Ding Z. Study of the spatial object’s exterior attitude measurement based on multi-linear CCD. [C]∥2008 3rd IEEE Conference on Industrial Electronics and Applications, June 3-5, 2008, Singapore. New York: IEEE, 1945-1948(2008).
Ai L, Yuan F, Ding Z. Study of the spatial object’s exterior attitude measurement based on multi-linear CCD. [C]∥2008 3rd IEEE Conference on Industrial Electronics and Applications, June 3-5, 2008, Singapore. New York: IEEE, 1945-1948(2008).
[18] Wang Y, Yuan F, Jiang H et al. High precision pose calculation of space target based on three linear array CCD[J]. Acta Optica Sinica, 38, 0515004(2018).
Wang Y, Yuan F, Jiang H et al. High precision pose calculation of space target based on three linear array CCD[J]. Acta Optica Sinica, 38, 0515004(2018).
[19] Hartley R, Zisserman A[M]. Multiple view geometry in computer vision: estimation- 2D projective transformations, 87-131(2004).
Hartley R, Zisserman A[M]. Multiple view geometry in computer vision: estimation- 2D projective transformations, 87-131(2004).
[20] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334(2000). http://www.emeraldinsight.com/servlet/linkout?suffix=b48&dbid=16&doi=10.1108%2FIR-07-2013-376&key=10.1109%2F34.888718
Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334(2000). http://www.emeraldinsight.com/servlet/linkout?suffix=b48&dbid=16&doi=10.1108%2FIR-07-2013-376&key=10.1109%2F34.888718
[21] [M]. Numerical analysis(2012).
Sauer T, Timothy Sauer[M]. 数值分析(2012).
[M]. Numerical analysis(2012).
Sauer T, Timothy Sauer[M]. 数值分析(2012).
[22] Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 81, 155-166(2009). http://dl.acm.org/citation.cfm?id=1487412
Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 81, 155-166(2009). http://dl.acm.org/citation.cfm?id=1487412
[23] Zheng Y Q, Kuang Y B, Sugimoto S et al. Revisiting the PnP problem: a fast, general and optimal solution. [C]∥2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE, 2344-2351(2013).
Zheng Y Q, Kuang Y B, Sugimoto S et al. Revisiting the PnP problem: a fast, general and optimal solution. [C]∥2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE, 2344-2351(2013).
[24] Lu C P, Hager G D, Mjolsness E. Fast and globally convergent pose estimation from video images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 610-622(2000). http://doi.ieeecomputersociety.org/10.1109/34.862199
Lu C P, Hager G D, Mjolsness E. Fast and globally convergent pose estimation from video images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 610-622(2000). http://doi.ieeecomputersociety.org/10.1109/34.862199
[25] Chen P, Wang C X. IEPnP: an iterative camera pose estimation algorithm based on EPnP[J]. Acta Optica Sinica, 38, 0411001(2018).
Chen P, Wang C X. IEPnP: an iterative camera pose estimation algorithm based on EPnP[J]. Acta Optica Sinica, 38, 0411001(2018).